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A gear system transmits power by means of meshing gear teeth and is conceptually simple and effective
in power transmission. Thus typical applications include electric utilities, ships, helicopters, and many
other industrial applications. Monitoring the condition of large gearboxes in industries has attracted
increasing interest in the recent years owing to the need for decreasing the downtime on production
machinery and for reducing the extent of secondary damage caused by failures. This paper addresses the
development of a condition monitoring procedure for a gear transmission system using artificial neural
networks (ANNs) and support vector machines (SVMs). Seven conditions of the gear were investigated:
healthy gear and gear with six stages of depthwise wear simulated on the gear tooth. The features
extracted from the measured vibration and sound signals were mean, root mean square (rms), variance,
skewness, and kurtosis, which are known to be sensitive to different degrees of faults in rotating machine
elements. These characteristics were used as an input features to ANN and SVM. The results show that
the multilayer feed forward neural network and multiclass support vector machines can be effectively
used in the diagnosis of various gear faults.
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1. Introduction

Condition monitoring of rotating machines is of
crucial importance and has been studied for several
decades. Vibration and sound signal analysis methods
are widely used in condition monitoring of rotating
machinery and structures. These techniques can help
by detecting faults early, allowing parts to be replaced
before a significant damage occurs. The application of
fault classification tools viz. artificial neural networks
(ANN), support vector machines (SVM), genetic algo-
rithms, hidden Markov models to the condition moni-
toring of machinery has consequently been the subject
of considerable research. Traditional pattern recogni-
tion includes a large collection of different types of
mathematical tools (preprocessing, extraction of fea-
tures, and final recognition). In many cases it is diffi-
cult to say what kind of tool would be the best for a
particular problem (Wang, Mc Fadden, 1995;Mur-
ray, Penman, 1997, Mc Cormick, Nandi, 1997).
Artificial neural networks (ANNs) are popular in pat-
tern recognition applications including sound and vi-

bration monitoring as they allow real-time condition
monitoring at a fairly low cost. ANNs have capability
to learn from the past data to classify machine’s work-
ing condition. This information can be stored and em-
ployed for later use. The contributions of some authors
(Li et al., 2000; Samanta, 2004; Chen, Wang, 2002;
Paya et al., 1999) reveal the application of neural net-
works to condition monitoring of rotating machinery
and its high success rates. ANNs consequently appear
to be a possible solution to gear diagnostics problem as
they could allow real-time online condition monitoring
at a reasonably low cost (Yang et al., 2002).
Chen, Wang, (2002) dealt with multi-layer per-

ceptron (MLP) pattern classifiers for wavelet map in-
terpretation and their application as a tool for me-
chanical fault detection. Features for neural networks
were extracted from instantaneous scale distribution.
This study was undertaken to simplify the difficulties
in inspecting complicated wavelet patterns in time-
scale domain. The authors highlighted the details of
construction, boxing, and testing multilayer percep-
tron based classifiers for diagnosis of gear faults. Paya
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et al. (1999) carried out investigations to study both
bearing and gear faults introduced separately as a sin-
gle fault and then together as multiple faults in the
drive line. The real time acceleration signals obtained
from the driveline were preprocessed by wavelet trans-
forms for the neural network to perform detection and
identification of the exact kind of fault occurring in the
model drive line. The authors summarised the results
of their research for distinguishing between different
kinds of faults viz. good gear, blip gear, shaved gear,
and one with inner race defect bearing in a drive line.
An overall success rate of 96% was achieved on test
by back propagation network which gave the details of
the fault in the driveline. Vyas, Kumar (2001) car-
ried out experiments to automate the fault detection
procedure in rotating machinery. A back propagation
learning algorithm and a multilayer network were em-
ployed for fault detection. Five different types of faults
were introduced in the experimental setup and five sta-
tistical moments of vibration signals were employed to
box the network. An overall success rate of 90% was
obtained in this work.
Wuxing et al. (2004) conducted experiments on

a gearbox to classify the gear faults using cumulants
and the radial basis function (RBF) network. The cu-
mulants were calculated from the vibration signals col-
lected from the inspected gearbox and were used as in-
put features to an ANN. The radial basis function net-
work was then used as a classifier for various operating
conditions of the helical gearbox. e.g. normal, spalling,
one worn tooth condition, and two worn teeth condi-
tion. The authors concluded that the method of fault
classification by combining cumulants and the radial
basis function network is promising and achieves better
accuracy than many of the current methods available.
Amarnath et al. (2013) used a C4.5 decision tree algo-
rithm to classify faults in ball bearings. Sound signals
were acquired from the bearing setup, descriptive sta-
tistical features were extracted from the sound signals
to feed into decision tree algorithm. Results showed
about 95.5% classification accuracy to diagnose vari-
ous faults in ball bearings. However, machinery fault
classification using artificial intelligence methods have
developed based on empirical risk minimisation princi-
ple; hence these methods have some disadvantages viz.
local optimal solution, low convergence rate, over fit-
ting and poor generalisation when the fault classifica-
tion samples are few. Support vector machine is a fairly
new machine learning tool which is effectively used to
minimise the aforementioned drawbacks. The main dif-
ference between SVMs and other classification tools is
in their risk minimisation. The structural risk minimi-
sation principle is used in SVMs to decrease an up-
per bound based anticipated risk. In the case of ANNs
traditional risk minimisation procedure is used to de-
crease the error in training of datasets. Hence, the dif-
ference in risk minimisation results in a better generali-

sation performance for SVMs (Namdari, Hooshang,
2014; Banerjee, Das, 2012). The SVM classifier is
extensively used for fault detection and classification
in rotating machines/machine elements viz. bearings,
gears, fan blades, cams, etc.
Samanta (2004) presented an experimental study

to compare the performance of gear fault detection
and classification using ANN and SVM. The time do-
main vibration signals of a rotating machine with nor-
mal and defective gears were preprocessed for feature
extraction. The role of different vibration signals at
normal and light loads were investigated in this work.
SVM shows better classification accuracy than ANN.
In addition, genetic algorithms (GA) were used to im-
prove accuracy of fault classification. With GA based
selection, the performance of ANN and SVM showed
comparatively equal accuracy in results. Yang et al.
(2005) presented a novel scheme to detect faults in re-
ciprocating compressors of refrigerators. The vibration
and noise signals were processed using wavelet trans-
form to find diagnostic information. Further the statis-
tical features of wavelets were used for fault classifica-
tion using ANN and SVM techniques. A high accuracy
in classification of faults was obtained using SVM tech-
nique.
Shin et al. (2005) adopted SVM technique for de-

tection and classification of faults in electro mechani-
cal machinery using vibration signal parameters. Mul-
tilayer perception (MLP) of ANN technique was also
included in the diagnosis program. The results con-
cluded that the classification of faults using SVM was
superior to that of MLP of ANN techniques. Yuan,
Chu (2006) carried out fault diagnosis of turbo pump
rotor using SVM with multiclass algorithm and ANNs.
SVM based fault classification was proved to be more
effective and correct in comparison with ANN algo-
rithm. Sugumaran et al. (2007) employed proximal
support vector machines (PSVM) and SVM to classify
faults in bearings. The authors compared the results of
PSVM and SVM. PSVM was found to have fewer itera-
tions and faster learning as compared to SVMs in fault
classification. A novel method to diagnose faults in ro-
tating machinery was proposed by Hu et al. (2007).
Improved wavelet package transform was used to ex-
tract the salient frequency band features from the vi-
bration signals. SVM ensemble technique was adopted
in fault classification, which provides promising results
in diagnosis of machinery. Aditya et al. (2016) have
considered ANN and SVM classification techniques to
diagnose simulated faults in roller bearings using sta-
tistical features of raw vibration signals. The authors
have considered different fault severity levels in bear-
ings operating under various speeds and load condi-
tions. The results showed the suitability of ANN and
SVM for detecting bearing faults. In our recent work,
(Amarnath, Praveen Krishna, 2014) experimen-
tal investigations have been carried out to detect lo-
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calised gear tooth faults of a two stage helical gear-
box. EMD based statistical parameters of sound and
vibration signals were used to diagnose the severity of
faults in helical geared system. Although the analysis
of temporal and frequency features of sound and vi-
bration signals is adequate to detect and diagnose the
simulated faults on gear tooth, there is a need for reli-
able fast automated diagnostic procedure for gear fault
detection.
Artificial neural networks have potential applica-

tions to classify faults in machine elements viz. gears,
bearings, cams, rotors, etc. The present work is con-
tinuation of our recent work (Amarnath, Praveen
Krisshna, 2014), where statistical parameters of
sound and vibration signals were considered for gear
fault detection. In this work, attempts are made to
classify and diagnose the simulated faults in helical
gears of a two stage helical gearbox. Gear fault clas-
sification was carried out using ANNs, the statistical
parameters extracted from the vibration and sound
signals of a two stage helical gearbox were used to
train and test the ANN, results obtained from this
classification method showed 92% classification accu-
racy. However, in order to improve the fault classifica-
tion accuracy, the vibration and sound signal datasets
were processed using multiclass SVMs. Result obtained
from the SVM classification technique showed about
97.1% accuracy, which highlighted the suitability of
the method to classify the localised faults in the heli-
cal geared system.

Fig. 1. Experimental setup of two stage helical gearbox.

2. Experimental setup

Figure 1 shows the experimental setup. The setup
consists of a 5 HP two stage helical gearbox, whose
specifications are given in Table 1. The gear box is
driven by a 5.5 HP, 3-phase induction motor with a
rated speed of 1440 rpm. The speed of the motor is con-
trolled by an inverter drive and for the present study
the motor is operated at 80 rpm. In other words, the
speed of the gear is 1200 rpm. With a step up ratio of
1:15, the speed of the pinion shaft in the second stage
of the gear box is 1200 rpm. The pinion is connected

Table 1. Dimensions, specifications, and test conditions
of the gears.

First Second
stage stage

Number of teeth 43/13 73/16

Pitch circle diameter (mm) 198/65 202/48

Pressure angle 0◦) 20 20

Helix angle 0◦) 20 15

Modules 4.5/5 2.75/3

Speed of shafts
80 rpm 1200 rpm
(input) (output)

Mesh frequency 59 Hz 320 Hz

Step up ratio 1:15

Rated power 5 HP

Power Transmitted 2.6 HP
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Fig. 2. Photograph of the experimental setup with sensors and equipments.

to a DC motor (which is used as generator) to gener-
ate 2 kW power which is dissipated in a resistor bank.
This loading arrangement minimises additional torque
fluctuations. Tire couplings are fitted between the elec-
trical machines and gear box so that the backlash in
the system can be restricted to the gears.
The motor, gear box, and generators are mounted

on I-beams which are anchored to a massive concrete
block. A B&K 4332 accelerometer was stud-mounted
to measure the vibration signals generated on the bear-
ing housing of pinion shaft. The accelerometer outputs
were conditioned using B&K 2626 charge amplifier.
The acoustic signals were measured by a B&K

4117 microphone which was installed close to the
test pinion. Position of the microphone is important
in acoustic measurements. Initially the measurements
are taken at different distances and directions. Maxi-
mum useful frequency for the measured sound signal
is 4.1 kHz, at this frequency the maximum distance
for near field assumption (assuming 1 wavelength) is
around 8.1 cm, in the present study microphone has
been placed at a distance of 5.5 cm (near field condi-
tion), this procedure was successfully used in our pre-
vious work (Amarnath, Praveen Krishna, 2014).
The experimental setup with sensors and equipment is
shown in Fig. 2.

2.1. Fault simulation

Overhaul time of a new gearbox is more than one
year. It is very difficult to study the fault detection

a) b) c) d) e) f) g)

Fig. 3. Details of gear damage for the experiment (a) healthy gear, (b)–(g) tooth removal from 10% to 100%.

procedures without seeded fault trials. Local faults in
a gear can be classified into three categories viz. sur-
face wear spalling, cracked tooth, and loss of a part of
tooth due to breakage of tooth at root or at a point on
working tip (broken tooth or chipped tooth). There are
various methods to simulate faults in a geared system.
The simplest approach is partial tooth removal. This
simulates the damage due to breakage at a point on
the working tip. This type of fault is common in many
industrial applications (Staszewski et al., 1997). In
the present experiment, depthwise damage was simu-
lated on the helical gear tooth by grinding operation.
Figure 3 shows seven cases of the gear damage con-
sidered for experiments: healthy gear and gear with
six stages of depthwise tooth removal, i.e. 0%, 10%,
20%, 40%, 60%, 80%, and 100% tooth removal con-
ditions. Figure 4 depicts photographs of healthy and
worn gears.
For controlled power transmitted by the gearbox,

vibration signals and sound signals were picked up by
the accelerometer and microphone and were acquired
using Agilent 35670A FFT analyser. Statistical fea-
tures were extracted from the acquired datasets to
classify different faults simulated in a gear tooth. The
vibration and sound signals were truncated to 3 kHz
using a low pass filter and sampled at 8.16 kHz. The
sampled signals were then processed using MATLAB
6.5 neural network toolbox (Demuth, Beale, 1998).
SVM torch, a freely available C++ based object ori-
ented machine learning library was used for training
and testing model (Collobert, Bengio, 2001).
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a) b)

Fig. 4. Test pinions: a) healthy pinion, b) defective pinion.

2.2. Test procedure

The experiments were conducted for two load con-
ditions: 1 kW and 2 kW load, i.e. 50% and 100% load
capacity of the resistor bank. The vibration and sound
signal datasets were collected when the helical gearbox
was operating at 0%, 10%, 20%, 40%, 60%, 80%, and

Fig. 5. Flow chart of gear fault diagnostic procedure.

100% tooth removal conditions. A total of 30 datasets
were collected for each tooth removal condition. Vi-
bration and sound signals acquired from the gearbox
were used to classify faults using ANNs and SVMs.
Figure 5 shows a flow chart of the signal analysis and
fault classification procedure.
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3. Neural networks in fault classification
of rotating machines

ANNs are practical to use because they are non-
parametric. It has been reported that the accuracy
of a neural classifier is better than that of the tra-
ditional ones. Artificial neural networks offer advan-
tages for automatic detection and diagnostics of ro-
tating machines since they do not require an in-depth
knowledge of the behavior of the operating machines
or their internal vibration mechanisms. However, they
require a large number of boxing examples. Artificial
neural networks are inspired by biological findings re-
lating to the behavior of the brain as a network of
units called neurons and have been found to be an ef-
fective tool for pattern recognition in many situations
where data are fuzzy or incomplete. They are based
on models of human neurons and have been used to
perform tasks that previously relied on human judg-
ment to take decisions (Murray, Penman, 1997;Mc
Cormick, Nandi, 1997; Samanta, 2004; Hu et al.,
2007). The basic building block for an artificial neural
network is the neuron. Each neuron consists of many
inputs and outputs. A typical neuron model is as shown
in Fig. 6.

Fig. 6. Typical neuron model.

3.1. Test procedure

In the model the activation value (x) is given by
the weighted sum of its M input values (ai) and a
bias term (θN ). The output signal (S) is typically a
nonlinear function f(x) of the activation value. The
following equations describe the typical neuron model.

Activation:

x =
M∑
i=1

wiai − θN . (1)

Output signal:

s = f(x). (2)

A common differentiable output function used in
the back propagation learning process is one which pos-
sesses a sigmoid nonlinearity. Two examples of nonlin-
ear functions are the logistic function and hyperbolic

tangent function. These two functions are shown in
Figs. 7a and b.

Logistic function:

f(x) =
1

1 + ex
, −∞ < x <∞. (3)

Hyperbolic tangent function:

f(x) = tanh(x) =
ex − e−x

ex + e−x
, −∞ < x <∞. (4)

For the logistic function the limit is 0 ≤ F (x) < ∞
and for the hyperbolic tangent function the limit is
−1 ≤ f(x) ≤ 1. A typical feed forward neural network
is discussed in the next section.

a)

b)

Fig. 7. Nonlinear function: a) logistic function,
b) hyperbolic tangent function.

3.2. Multilayer feed forward neural network model

A three layered feed forward neural network is as
shown in Fig. 8. The network consists of three layers:

i. The input layer that receives preprocessed data.
ii. The hidden layer which processes the data.
iii. The output layer that provides the result of the
analysis, i.e. healthy or damaged.

The input layer has I linear input units indexed by i,
the hidden layer has J nonlinear units indexed by j,
and the output layer has K nonlinear units indexed
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Fig. 8. Three layered feed forward neural network.

by k. For simplicity, only one layer (the second layer)
of hidden units is considered here. Extension of learn-
ing to a network consisting of several hidden layers is
trivial. Since the vector a(m) is given at the input layer
and the desired output b(m) is available at the output
layer, the error between the desired output vector b(m)
and actual output vector b′(m) is available only at the
output layer. Using this error, it is necessary to adjust
the weights (wh

ji) from the input units to the hidden
units, and the weights (wkj) from the hidden units to
the output units (Yegnanarayana, 1999).

3.3. Configuring the neural network

The neural network design parameters play an im-
portant role in the development of classification mod-
els. The activation function used at the hidden layer
and the output layer in the network was a hyperbolic
tangent function. The hidden layer was implemented
with 10, 15, and 18 neurons. The ANN was optimised
for best accuracy by arriving at the best possible com-
bination of number of epochs, hidden layers, and learn-
ing rate at constant momentum rate. The learning
rates used were 0.1 and 0.15 and the number of epochs
5, 10, 15, 20, and 25. To improve generalisation and
to avoid overboxing, the cross validation method was
applied during the boxing.
Optimal design parameters were obtained using

cross validation for verification. The optimal param-
eters were obtained as number of epochs: 10, number
of nodes in the hidden layer: 25, and learning rate: 0.1
for 50% load. The corresponding values for 100% load
were 25, 15, and 0.1. The preprocessing is performed on
the whole signal to extract the required features. The
most commonly used fault diagnostic parameters of vi-
bration/sound signals viz. mean (µ), root mean square
(rms), variance (σ2), skewness, and kurtosis were used
as input features to the ANN. The boxing of the neural
network with boxing data was performed using MAT-
LAB 6.5.

The three-layered feedforward neural network was
boxed for the back propagation algorithm using 20 sets
of data corresponding to each fault condition. Each
dataset consisted of 30 time domain signals, each time
domain signal consisting of the average of 16 time his-
tory plots obtained over 5 revolutions of the gear tooth.
The model after boxing captures the discriminating
hyper surface. The mean squared error on the boxing
data after each epoch was plotted as shown in Fig. 9.
It should be noted that change in error is significantly
low after 18 epochs.

Fig. 9. Training error curve of three layer neural network
model.

3.4. Fault classification using support vector machines

In order to obtain classification performance better
than what was got using ANNs, SVMs were used. The
SVM is a linear classifier pioneered by VAPNIK. It
has emerged as a pattern classifier that can learn even
from a small boxing dataset for each class (Shin et
al., 2005). The main idea of an SVM is to construct
a hyperplane as a decision surface in such a way that
the separation between positive and negative examples

Fig. 10. Classification of two classes by SVM.
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(margin) is maximised (Yaun, Chu, 2006). Figure 10
shows the classification of a series of points into two
different classes of data, class A (asterisk) and class B
(circles).
The notion that is central to the construction of

the support vector learning algorithm is obtaining the
inner-product kernel between a support vector X1 and
another vector X2 drawn from the input space. The
support vectors constitute a small subset of the boxing
data extracted from the support learning algorithm.
The separation between the hyperplane and the clos-
est data point is called the margin of separation, de-
noted by ‘ρ’. The goal of a support vector machine is
to find a particular hyperplane for which the margin of
separation ‘ρ’ is maximised. Under this condition the
decision surface is referred to as optimal hyperplane
(Yang et al., 2005; Hu et al., 2007).
The SVM is based on the following two mathemat-

ical operations:

(a) Nonlinear mapping of an input pattern vector into
a higher dimensional feature space.

(b) Construction of an optimal hyper plane for sep-
arating the patterns in the higher dimensional
space.

Operation (a) is performed in accordance with Cover’s
theorem on the separability patterns. For an input pat-
tern space made up of nonlinearly separable patterns,
Cover’s theorem states that such a multidimensional
space may be transformed into a new feature space
where the patterns are linearly separable with a high
probability, provided the transformation is nonlinear,
and the dimension of the feature space is high enough.
These two conditions are embedded in operation (a).
The separating hyperplane is defined as a linear func-
tion of the vectors drawn from the feature space. Con-
struction of this hyperplane is performed in accordance
with the principle of structural risk minimisation that
is rooted in Vapnik–Chervonenkis (VC) dimension the-
ory.
The optimal hyperplane is defined as

NL∑
i=0

αidik(X,Xi) = 0, (5)

where {αi}NL
i=1 and {di}NL

i=1 are the Langrange multi-
plier and desired response (target output) respectively,
di ∈ {1, −1} and K(X,Xi) are inner product kernels
and defined by

K(X,Xi) = ϕT(X)ϕT(Xi)

=

m1∑
j=1

ϕj(X)ϕJ(XJ) = 1, 2, . . . , NL . (6)

Here X is an m-dimensional vector drawn from the in-
put space, and {ϕj(X)}m1

j=1 denotes a set of nonlinear

transformations from the input space to the m1 dimen-
sional feature space. From Eq. (5) it is seen that the
construction of the optimal hyperplane is based on the
evaluation of an inner product kernel K(X,Xi) which
is used to construct the optimal hyperplane in the fea-
ture space without having to consider the feature space
itself explicitly. Since the design of an SVM involves
finding an optimum hyperplane, it is necessary to find
the optimal Lagrange multipliers which are obtained
from the given boxing samples {(Xi di)}NL

i=1.

4. Results and discussions

4.1. Fault classification using neural networks

Figures 11a and b and Fig. 12a and b show typi-
cal raw time domain vibration and sound signals ac-
quired from healthy and faulty gears respectively. X
axis in the plots show time in seconds and Y axis cor-
responds to acceleration in m/s2 and sound level in
mPa for vibration and sound time domain plots, re-
spectively.

a)

b)

Fig. 11. Vibration signals in time domain:
a) healthy gear, b) worn gear.

Although some impulses are observed under fault
advancement of worn gear, it is hardly possible to eval-
uate the gear fault condition only through such a tem-
poral signal. Mean (µ), root mean square (rms), vari-
ance (σ2), skewness, and kurtosis of the measured ac-
celeration and sound signals were used as input fea-
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a) b)

Fig. 12. Sound signals in time domain: a) healthy gear, b) worn gear.

tures to an ANN with five input nodes, fifteen/twenty-
five nodes (for 100% or 50 % loads respectively) in the
hidden layer and seven output nodes to classify the
seven categories of faults in the gearbox.
After boxing, the network was tested using testing

examples, 10 datasets were used for testing. Thus box-
ing dataset consisted of 140 values and the testing data
consisted of 70 values. The classification performance
obtained for the gearbox operating at 50% and 100%
loads under various cases is given in Tables 2 and 3,
respectively.
The input data gave rise to 100% training success.

However, the results obtained from testing show that
the classification performance of the ANN yielded a
maximum accuracy of 89.87% (for 50% load condition)
and 91.4% (for 100% load condition) for the chosen

Table 2. Classification performance for different ANN configurations for diagnosis of gear faults with 50% of maximum
load (vibration data).
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%
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10
0%
Fa
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5 10 0.1 9 6 5 4 3 3 5 28/70 40

10 10 0.1 9 10 4 8 10 7 8 55/70 78.57

15 10 0.1 3 6 10 6 10 6 4 48/70 68.71

10 10 0.1 7 10 4 8 10 7 8 55/70 78.57

10 15 0.1 8 7 8 8 7 8 10 58/70 82.71

10 20 0.1 7 10 8 7 8 10 7 60/70 85.71

10 25 0.1 10 9 7 10 10 8 9 63/70 89.87

10 25 0.15 10 8 7 7 6 9 9 56/70 80.37

10 20 0.18 10 7 7 6 5 8 8 51/70 72.84

30 30 0.15 10 6 8 7 5 7 3 45/70 64.28

15 20 0.15 10 5 4 4 4 8 10 43/70 61.42

range of defect stages. Further, the sound signals ac-
quired from the gearbox under above mentioned op-
erating conditions were considered for fault classifica-
tion. Table 4 shows the results of training testing ca-
pabilities of the ANN for statistical parameters data
extracted from the sound signals. Though input data
showed 100% training success, the test successes of the
input data varied from 90.4% to 44.2% and 92.8% to
37.14% for 50% and 100% load conditions respectively.
In the case of 50% load condition, the sound signals
acquired from the gearbox provided significant contri-
bution to classify the local faults in the gear pair un-
der the best combination of epochs, hidden layers and
learning rate as given in Table 4, the testing success
rates of 63/70 (90.4%), 60/70 (85.%), and 56/70 (80%)
were obtained.
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Table 3. Classification performance for different ANN configurations for diagnosis of gear faults with 100 % of maximum
load (vibration data).
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15 10 0.1 10 7 8 6 8 10 4 53/70 75.71

20 10 0.1 10 10 8 7 8 10 7 60/70 85.71

25 10 0.1 9 8 9 5 5 10 7 53/70 75.71

20 10 0.1 10 10 8 7 8 10 7 60/70 85.71

20 15 0.1 8 9 8 9 10 10 10 64/70 91.42

20 18 0.1 10 10 7 7 7 10 8 59/70 84.28

20 15 0.15 8 9 8 6 5 10 8 54/70 77.14

15 15 0.15 10 10 9 7 2 7 0 45/70 64.28

20 20 0.15 9 5 4 1 1 8 9 36/70 51.14

Table 4. Classification performance for different ANN configurations for diagnosis of gear faults with 50% of maximum
load (sound data).
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15 10 0.1 7 5 9 10 7 8 4 50/70 71.42

10 10 0.1 6 9 10 7 4 8 9 53/70 75.71

10 15 0.1 7 10 9 6 7 10 5 55/70 78.57

10 20 0.1 10 10 6 8 7 10 6 60/70 85.71

10 25 0.1 9 8 10 9 9 9 9 63/70 90

10 20 0.18 8 6 9 10 9 6 8 56/70 80.0

10 25 0.15 8 10 8 9 6 4 6 51/70 72.85

30 30 0.15 6 8 7 4 10 9 3 47/70 67.14

15 20 0.15 4 7 10 8 4 6 9 43/70 61.42
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Table 5. Classification performance for different ANN configurations for diagnosis of gear faults with 100 % of maximum
load (sound data).

N
o.
of
ep
oc
hs

N
o.
of
ne
ur
on
s

in
th
e
hi
dd
en
la
ye
r

L
ea
rn
in
g
ra
te Number of defects correctly identified

N
o.
of
ex
am
pl
es

id
en
ti
fie
d
co
rr
ec
tl
y

Su
cc
es
s
ra
te
%

0%
Fa
ul
t

10
%
Fa
ul
t

20
%
Fa
ul
t

40
%
Fa
ul
t

60
%
Fa
ul
t

80
%
Fa
ul
t

10
0%
Fa
ul
t

5 10 0.1 0 4 3 7 8 4 0 26/70 37.1

10 10 0.1 2 4 7 8 3 7 4 35/70 50

15 10 0.1 8 10 6 7 6 4 6 47/70 67.14

20 10 0.1 4 6 9 10 8 9 8 54/70 77.14

25 10 0.1 6 9 7 6 4 10 8 50/70 71.14

20 10 0.1 7 9 10 8 9 8 8 53/70 75.71

20 15 0.1 10 9 8 7 9 10 10 65/70 92.8

20 18 0.1 9 7 8 6 9 9 9 57/70 81.42

20 15 0.15 4 8 9 7 8 9 9 55/70 78.57

15 15 0.15 9 8 10 6 5 4 8 50/70 71.42

20 20 0.15 4 7 10 8 4 6 9 42/70 68.57

Further, for 100% load condition the success rates
of 65/70 (92.8), 57/70 (81.42), 55/70 (78.57) were
obtained under the best combination of number of
epochs, hidden layers, and learning rates given in Ta-
ble 5.

4.2. Results of fault classification using support
vector machines

Support vector machines are extensively used for
data classification and regression problems. However,
application to classification has been considered in this
work. The procedure of gear fault classification based
on multilayer classification consists of three steps:
1. Extract the statistical features from the vibra-
tion and sound signals acquired under healthy and
faulty conditions of the gearbox.

2. Training SVMs.
3. Identify the gear faults with the trained classifier.
The same set of data as used for ANNs has been
processed using SVMs. Table 6 shows the details of
datasets, while Tables 7 and 8 give the classification
performance of vibration and sound respectively.
The dataset corresponding to case A in Table 6

consists of 210 data values for seven different operat-
ing conditions at 50% load condition. Similarly, the
dataset corresponding to Case B consists of another
210 data values for seven tooth removal conditions at
100% load condition. The datasets A and B were split
into 140 boxing and 70 testing classes each. A multi-
class SVM with the Gaussian kernel function, which

Table 6. Details of datasets of both vibration and sound
signals.
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was proved to be the best one in machinery fault di-
agnosis (Yang et al., 2005), was used in the present
work in the following form:

K(X,Xi) = exp

[
‖X −Xi‖

2σ2

]
. (7)

The parameter σ denotes the constant width kernel
parameter, ‖X−Xi‖ is the Euclidean distance between
the vectors X and Xi. The optimum value of constant
width kernel parameter σ was selected based on an it-
erative trial and error process and datasets. For the
vibration signals obtained from the gearbox, the SVM
showed best classification performance for σ = 8 and
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Table 7. Performance of SVM in gear fault classification
using vibration signals.

50% load 100% load

Classification Classification
σ σ

performance (%) performance (%)

2 40 (28/70) 2 73 (51/70)

3 68 (47/70) 3 56 (39/70)

5 52 (36/70) 5 83 (58/70)

6 87 (61/70) 6 94.2 (66/70)

8 91.4 (64/70) 8 79 (55/70)

σ = 6 for 50% and 100% load cases respectively as
seen in Table 7. Further, SVM based gear fault clas-
sifications is continued using sound signals of gearbox
acquired under 50% and 100% load conditions. Table 8
gives the best classification results for σ = 8 and σ = 6
for 50% and 100% load conditions respectively.

Table 8. Performance of SVM in gear fault classification
using sound signals.

50% load 100% load

Classification Classification
σ σ

performance (%) performance (%)

2 51.4 (36/70) 2 70 (49/70)

3 67.1 (47/70) 3 74.2 (52/70)

5 71.4 (50/70) 5 81.4 (57/70)

6 82.5 (58/70) 6 97.1 (68/70)

8 94.2 (66/70) 8 79 (54/70)

5. Summary and conclusions

An artificial neural network and support vector ma-
chine fault classification methods have been used to
perform gear fault diagnosis based on the extracted
statistical features from the sound and vibration sig-
nals of two stage helical gearbox. The operating con-
ditions involved a healthy gear and gear with simu-
lated faults consisting of depthwise removal of tooth
in six stages. The vibration and sound datasets were
collected from the gearbox in real time and were then
applied to perform initial testing and subsequent vali-
dation. The following conclusions were drawn from the
experimental observations.

1. ANN fault classification method based on the sta-
tistical features extracted from the vibration sig-
nals showed classification performances of over
89.87% for 50% load condition and 90% for 100%
load conditions.

2. Further, ANN method based on statistical fea-
tures of sound signals resulted in a slight improve-
ment in gear fault classification performance, re-

sults showed over 91.4% for 50% load condition
and 94.2% for 100% load conditions.

3. In order to improve the classification performance,
SVM method was used to process the statistical
features. The vibration signal statistical param-
eters processed using the multiclass SVM based
on multiclass class strategy showed better perfor-
mances of 92% for 50% load and 95% for 100%
load conditions.

4. For the sound signals, the SVM based on mul-
ticlass strategy showed the classification perfor-
mances over 94.2% for 50% load and 97.1% for
100% load conditions.

5. The better classification performance was ob-
tained by SVM based on multiclass strategy which
can serve as a promising alternative for intelligent
gear fault diagnosis applications using the vibra-
tion and sound signals.
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