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In vibration control with piezoceramics, a high coupling of the piezoelement with the structure is
desired. A high coupling improves the damping performance of passive techniques like shunt damping.
The coupling can be influenced by a the material properties of the piezoceramics, but also by the placement
within the structure and the size of the transducer. Detailed knowlegde about the vibration behavior of the
structure is required for this. This paper presents an in-depth analysis of the optimal shape of piezoelectric
elements. General results for one-dimensional, but inhomogeneos strain distribution are provided. These
results are applied to the case of a longitudinal transducer and a bending bimorph. It is obtained that
for maximum coupling, only a certain fracture of the volume should be made of piezoelectric material. . .

Keywords: piezoelectric transducer, piezoelectric shunt damping, piezoelectric energy harvesting, vibra-
tion damping.

1. Introduction

Piezoceramics are widely used as actuators and
sensors in vibration control applications. Due to their
large frequency range of operation, they are especially
suited for damping of structural vibrations with acous-
tic emission. The piezoelectric shunt damping tech-
nique has been proven to be a lightweight and flex-
ible alternative to fully active vibration techniques
and to classical mechanical counteractive measures like
tuned mass dampers or materials with high dissipation
(Moheimani, 2003). However, the high cost still limits
its usage in many cases.
The maximum damping performance of passive

shunt damping techniques like the resonant LR-
network depends on the so-called generalized coupling
coefficient of the system (Hagood, von Flotow,
1991). This criterion is a measure how strongly the
mechanical system can be influenced by the piezoce-
ramics. Generally, the coupling coefficient is different
for the individual vibration modes of the structure,
and can be influenced especially by the placement of
the piezoelement. The generalized coupling coefficient
depends on the material coupling factor, but it is typi-
cally not the same value. Actually, it is always smaller
than the material coupling (Ulitko, 1977).

In order to maximize the performance of the damp-
ing device, the placement and size of the transducer
must be optimized. Several publications used the
method of maximizing the strain energy within the
piezoelement to optimize the position. However, this
yields only an approximate result, and in some cases
more precise methods are required. This publication
presents a calculation of the coupling coefficient for an
arbitrary vibration mode of the structure, which re-
sults in inhomogeneous, but one-directional strain and
stress distribution in the piezoelectric material. These
results are utilized to give instructions for the opti-
mal design of the most typical piezoelectric transducer,
which are the longitudinal and the bending configura-
tion. It is shown that the maximum coupling even oc-
curs for the case that not the whole transducer is made
of piezoelectric material. Further on, additional design
changes like partitioned electrodes and their influence
upon the coupling are discussed.

2. Piezoelectric equations and generalized

coupling coefficient

In many practical applications, mechanical stress
and strain mainly act in one direction. The linear con-
stitutive piezoelectric equations based on IEEE stan-
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dard 176 (IEEE, 1998) then read for the transverse
effect
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The indices denote the axis directions of mechanical
and electrical properties, with the 3-axis being always
axis of polarization. Two cases can be distinguished.
In longitudinal effect the mechanical stress acts in the
same direction as the polarization, while for transver-
sal effect the mechanical stress is orthogonal to the
direction of the polarization and the electrical field.
The mechanical strain and stress are termed S and T ,
the dielectric charge displacement D and the electrical
field strength E. The compliance under the condition
of a constant electric field is termed sEii and dii is the
piezoelectric charge constant. Further on, εT33 denotes
the absolute permittivity under constant stress. An im-
portant derivative parameter for a piezoceramics is the
material coupling coefficient k3i, which is defined as

k23i =
d23i
sEiiε

T
33

. (3)

This parameter can be obtained by a quasistatic de-
formation cycle of a piezoelectric element. Therefore, a
mechanical stress is applied to the piezoceramics with
short-circuited electrodes. Consequently, the piezoce-
ramics is mechanically deformed, and a mechanical
strain proportional to the stress is obtained. A ho-
mogeneous strain and stress distribution in the whole
piezoelectric material is assumed. At maximum defor-
mation, the electrodes are isolated, and the mechan-
ical stress is reduced to zero. This reduces the me-
chanical strain, but a certain amount remains. This
remaining deformation is due to the converted energy,
and after closing electrodes the piezoelement is de-
formed back to its original state. Figure 1 illustrates
this cycle.

Fig. 1. Quasistatic deformation cycle to determine
the material coupling coefficient k.

In contrast to this, the generalized coupling coeffi-
cient does not only depend on the piezoelement, but
also on the overall mechanical structure. It is similarly
defined like the mechanical coupling factor, with the
potential energy U and the converted energy Uconv,

K2 =
Uconv

U + Uconv
. (4)

However, in this case the stress distribution does not
have to be homogeneous, and in fact, due to the vibra-
tion mode it is typically inhomogeneous. Further on,
the potential energy also includes the energy that is
stored in the rest of the mechanical system.
A detailed analysis of the potential and the con-

verted energies has been performed in (Neubauer,
Schwarzendahl, Wallaschek, 2012). A general,
but one-dimensional distribution is assumed, which is
described by its strain Si in axis direction i, its mean
strain Si and by the variable part∆Si,3 over the length
of coordinate x3,

Si,3 =

ℓ3
∫

0

Si dx3

ℓ3
,

∆Si,3 = Si − Si,3.

(5)

This is illustrated by Fig. 2.
After some mathematical conversions, the general-

ized coupling coefficient can be written as
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This equation showns the relationship between the
material coupling and the generalized coupling. Obvi-
ously, the generalized coupling K depends beside the
material coupling also on the strain distribution within
the piezoelectric volume V . However, we can conclude
that

∫

V

S2
i dV

V S
2

i

≥ 1 and

∫

V

∆S2
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V S
2

i

≥ 0, (7)

which means that the generalized coupling coefficient
is always equal or smaller than the material coupling,

K ≤ k3i. (8)

Only for the special case of homogeneous strain distri-
bution these values are equal.
These equations can now be used to study different

relevant types of piezoelectric transducers.
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Fig. 2. Piezoelement with one-directional strain distribution.

3. Longitudinal transducer

Let us first discuss a longitudinal transducer, Fig. 3.
We assume a symmetric transducer with height L, of
which ℓ3 is made of piezoelectric material, the rest from
passive material. In order to use nondimensional pa-
rameters, we substitute these parameters by the ra-
tio β,

β =
ℓ3
L
. (9)

Additionally, we simplify the calculations and assume
the Young’s moduli of both materials to be equal. In
order to obtain the generalized coupling coefficient,
we have to determine the strain distribution. We will
study two cases: firstly the case of quasistatic deforma-
tion Fig. 3a, secondly the first longitudinal vibration
mode Fig. 3b.
The quasistatic vibration mode is characterized by

a homogeneous strain distribution. Converted and po-
tential energies are straight forward calculated as

Uconv =
1

2

1

sE33

k233
1− k233

Ael

ℓ3
βq̂2,

(10)
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1
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1
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q̂2,

Fig. 3. Longitudinal transducer partially made of piezoelectric material; a) quasistatic deformation,
b) first longitudinal vibration mode.

where q̂ is the amplitude of deformation. It is under-

stood that the converted energy grows linearly with

length ratio β, while the potential energy is not de-
pending on β. Substituting into Eq. (4) yields

K = k33

√

β

k233β + 1− k233
. (11)

The coupling is not depending on the vibration ampli-

tude q̂, but it grows in a nonlinear dependency with

β. Also the material coupling k is included in the re-

sult. This is illustrated in Fig. 4. The generalized cou-

pling is normalized to the material coupling, and the
dependency with piezovolume β is shown for different

material couplings k. The results differ slightly, but

all curves start at zero coupling for β = 0, which is

the case without piezoelectric layer. The highest cou-
pling is obtained for β = 1, where the generalized

coupling is identical to the material coupling. This re-

sult could be anticipated, it is due to the fact that

the whole transducer is made of piezoelectric mate-

rial in this case, and the strain distribution is homoge-
neous.
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Fig. 4. Generalized coupling factor versus length
ratio β for different material coupling factors and

for quasistatic vibration mode.

A different constellation is obtained when the first
longitudinal vibration mode is assumed, with

u3(x3) = −1

2
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which gives a strain distribution
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Accordingly, the required mean strain and difference
strain values are obtained as
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It should be noticed that these values only have to be
calculated for the piezoelectric volume, see the inte-
gration limits. Performing all necessary steps, the gen-
eralized coupling coefficient can again be calculated.
The result is shown in Fig. 5 in a comparable man-
ner like for the quasistatic deformation. Similar like
in the previous case, all functions start at K = 0 for
β = 0 and end at the same value. Inbetween, the char-
acteristics slightly depend on the material coupling k.

Secondly we can conclude that even when the whole
transducer is made of piezoelectric material, β = 1,
the coupling is smaller than the material coupling,
strictly speaking it is exactly

√
8/π = 0.9 of the mate-

rial coupling. Based on above insights, this reduced
coupling is due to the inhomogeneous strain distri-
bution.

Fig. 5. Generalized coupling factor versus length
ratio β for different material coupling factors; for

first longitudinal vibration mode.

But the most interesting fact is that the general-
ized coupling coefficient is maximized for a ratio of
only about βopt ≈ 0.743 of the whole transducer. This
is against common understanding, which would antic-
ipate the highest coupling for β = 1. However, also
this result can be explained by the above findings con-
cerning the inhomogeneous strain distribution. Above
that comes the fact that the outer parts of the trans-
ducer experience low strain and therefore low energy
conversion.
These results say, that more than this optimum

74% of piezomaterial will actually reduce the gener-
alized coupling from 96% of K down to 90% of K for
a transducer fully made of piezomaterial. This result
is highly important when designing transducer with
optimized usage of piezomaterial.

4. Bending transducer

The second important type of piezoelectric trans-
ducers is the bending type, see Fig. 6. Such bending
transducers typically consist of one piezoelectric layer
that is placed on a substrate layer. Alternatively, also
two piezoelectric layers with opposite poling direction,
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Fig. 6. Different realizations of bending transducers: a) piezoelectric and substrate layers,
b) two piezoelectric layers, c) substrate layer between two piezoelectric layers.

or two piezoelectric layers with a substrate layer in-
between can be considered. The same general results
for calculation of the generalized coupling factor can
be used. The required strain distribution are derived
from Euler-Bernoulli assumptions,

S1(x1, x3) = −(x3 + e)w′′(x1). (15)

In contrast to the longitudinal transducer, this time
the transversal effect is utilized, because the mechani-
cal strain acts in x1 direction. The parameter e denotes
the distance to the neutral axis of the bimorph. It can
be noticed that the bending type transducer the strain
is never homogeneous. It grows linearly with distance
to neutral axis and also to the second derivative of the
bending curve w(x1).
Performing the required mathematical calculations,

we end up with the following formula for the general-
ized coupling coefficient

K2 =
k231

k231 + (1− k231) fF [w(x1)]
, (16)

see also (Wolf, 2000). All detail informations are sum-
marized in terms f and F [w(x1)],

f =
IPZT + 1

rE
InFSubstr.

InFPZT − IPZT
,

(17)

F [w(x1)] =

ℓ1
ℓ1
∫

0

w′′2(x1)dx1

(w′(ℓ1)− w′(0))2
,

where f itself depends on the area moments of inertia
of the piezolayer and substrate layer. The area mo-
ments of inertia with respect to the neutral axis of
the whole bimorph are termed InF, while I denotes
the area moment of inertia around the center line of
each element. Piezo and substrate layers are defined
by the corresponding subindices. The bimorph length
is termed ℓ1, while w(x1) again determines the bend-
ing curvature. The generalized coupling coefficient ac-
cording to Eq. (16) especially depends on the function
f and the functional F [w(x1)]. While the dependency
with the cross-section of the bimorph is included in
f , the influence of the bending curve w(x1) and the
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size of electrode can be found in F [w(x1)]. As the op-
timization of the cross-section is already performed in
(Neubauer, Schwarzendahl, Wallaschek, 2012),
these results will just be summarized in short here.
Recalling Eq. (16), the value f must be minimized

in order to get the maximum coupling. There are dif-
ferent realizations possible. The most important ones
are 1) a piezoelectric layer together with a layer of sub-
strate, 2) two piezoelectric layers, 3) two piezoelectric
layers with substrate layer inbetween. We will focus on
the third option in the following.
The function f depends on the ratio of Young’s

moduli rE = rE,Piezo/rE,Substr of the piezoelectric and
the substrat materials, and also on the area moments of
inertia of the substrate and piezoelectric layers. For the
symmtric arrangement, these term can be written as

InFSubstr. =
ℓ2ℓ

3
3,s

12
,

(18)
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ℓ2ℓ

3
3

12
+ ℓ2ℓ3

(

ℓ3,s + ℓ3
2

)2

.

They depend on the geometry of the cross section, ℓ2,
ℓ3 are the corresponding lengths of the piezoelectric
layer in direction of x2, x3, while ℓ3,s is the length of
the substrate layer (and ℓ2,s = ℓ2). Figure 7 shows the
value f versus the thickness ratio rh = ℓ3/ (ℓ3 + ℓ3,s)
for different ratios of Young’s moduli. For rh = 0.5
the transducer only consists of the piezoelectric layer,
as the thickness of the substrate layer goes to zero,
while for rh = 0 the transducer consists of a substrate
layer with two piezoelectric layers of vanishing thick-
ness. This graph shows several things:

• for each Young’s modulus ratio, there is one opti-
mum thickness ratio which minimizes the function
f and therefore maximizes the coupling,

• the smaller the Young’s modulus of the substrate,
the larger is the optimum thickness of the sub-
strate, and the higher the maximum coupling,

Fig. 7. Functio f versus thickness ratio rh for various rE.

• for rH = 0.5 the coupling is independent from the
Young’s modulus of the substrate, because it only
consists of two piezoelectric layers,

• the generalized coupling of the transducer is al-
ways smaller than the material coupling, because
the function f is always larger than one.

The optimum cross-sections for different Young’s mod-
uli are shown in Fig. 8. The preferable constellation of
the cross section is the rightmost one, where the sub-
strate has a (rather theoretical) value of 1000 times the
piezoelectric layer.
Similar to f , also the functional F [w(x1)] must be

minimized for high coupling. It can be shown that
both f and F [w(x1)] can minimally be equal to one,
for which the generalized coupling coefficient is again
equal to the material coupling.
The results for the coupling depends on the vi-

bration mode, a fact that was already observed for
the longitudinal transducer. In this case, the vibration
mode is described by the bending curve w(x1). Again
we will analyze the result for two different vibration
modes: the quasistatic vibration mode, which would
occur for example in the case that a large tip mass is
connected to it, and the first bending eigenform which
occurs when it is excited in resonance. And also like
in the case of the longitudinal transducer, the influ-
ence of different sizes of the piezoelectric material is
studied. For simplicity, it is assumed that the piezo-
electric layer covers the whole length of the bimorph,
but the electrode is only from the clamped end until
position d, see Fig. 6. The result is given in Fig. 9 ver-
sus the ratio d/ℓ1, which has a similar meaning like the
length ratio β.A similar result can be obtained as for
the longitudinal transducer: the coupling of the trans-
ducer is increased when the size of the piezoelement
resp. the electrode is increased. But again, there exists
an optimum length, for which the coupling is maxi-
mized (in this case it means that F [w(x1)] is mini-
mized). This optimum length is about 2/3 of the beam
length for the static case and about 1/2 for the first
bending eigenform. The corresponding minimal val-
ues for the functional F [w(x1)] are 1.14 resp. 1.10,
which means the bending transducer does not offer
the same amount of coupling as the material factor.
The reason for this is again the inhomogeneous strain
distribution within the piezoelectric layer. Above that
comes a further reduction due to the cross-section, see
(Neubauer, Schwarzendahl, Wallaschek, 2011;
2012). These results again prove that it is possible to
safe a considerable amount of piezoelectric material
while even increasing the generalized coupling of the
transducer.
Finally, also the possibility of a partition of the

electrodes will be discussed. We study a partition into
individual electrodes with equal sizes, but with differ-
ent numbers of electrodes. For example, in the case of
two electrodes the first electrode covers the first half
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Fig. 8. Optimal cross sections for bending transducers. Maximum coupling grows from left
to right.

Fig. 9. Functionals F [w(x1)] versus length of electrode
for static and first bending eigenform.

of the length and the second one the second half of
the beam, while for three electrodes they cover the
first, the middle and the last third of the length. The
corresponding coupling is again analyzed by the val-
ues of the functional F [w(x1)], which are presented in
Fig. 10. This result shows that a fine partition gener-
ally increases the coupling, at least in most cases. By
checking the values for the static and the first eigen-
form, the functional approaches quickly the theoretical
optimum of F [w(x1)] = 1. A partition into two elec-
trodes on each surface is already sufficient, a further in-
crease does not increase the coupling any significantly
further. However, for the higher eigenforms the parti-
tion has a strong impact and improves the coupling.
This is due to the fact that in these cases the strain

Fig. 10. Functional F [w(x1)] for static and first 4
eigenforms or the beam with equally spaced parti-

tion of the electrodes.

changes its sign over the length of the beam, with alter-
nating areas of tension and compression forces. Using
only one electrode would result in an internal short
cut of the piezoelement, and the overall coupling is
very low, which can be seen on the high values of the
functional.

5. Conclusions

This paper present an in depth analysis of the gen-
eralized coupling coefficient of piezoelectric transducer.
The coupling is generally obtained for one-dimensional
strain distributions. The results are then applied to
longitudinal and bending transducers. They are used
to optimize the usage of piezoelectric material.
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It is shown that for inhomogeneous strain distribu-
tions the generalized coupling is reduced compared to
the material coupling. For the longitudinal transducer,
an amount of about 74% piezoelectric material results
in the highest coupling, while the bending transducer
should be covered only by 1/2 of its length with piezo-
electric material. For the bending transducer, the op-
timal electrode coverage must be combined with the
optimal cross section of substrate and piezoelectric
layer.
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