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The paper presents a study of a possible application of structure embedded piezoelectric actuators to
enhance the performance of a rotating composite beam exhibiting the coupled flexural-flexural vibrations.
The discussed transversal and lateral bending modal coupling results from the directional properties of
the beam’s laminate and ply stacking distribution. The mathematical model of the beam is based on
an assumption of cross-sectional non-deformability and it incorporates a number of non-classical effects.
The final 1-D governing equations of an active composite beam include both orthotropic properties of
the laminate and transversely isotropic properties of piezoelectric layers. The system’s control capabilities
resulting from embedded Macro Fiber Composite piezoelectric actuators are represented by the boundary
bending moment. To enhance the dynamic properties of the composite specimen under consideration
a combination of linear proportional control strategies has been used. Comparison studies have been
performed, including the impact on modal coupling magnitude and cross-over frequency shift.
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1. Introduction

The study of the dynamics of rotating beams is
an important prerequisite in the design of multiple
engineering structures, like turbine and helicopter ro-
tor blades, airplane propellers, flexible robotic arms,
etc. This is especially important in the case of sys-
tems made of composite materials and multi-layered
laminates since they exhibit rich dynamics due to di-
rectional properties of fiber reinforced layers. On the
other hand, this feature is becoming a promising con-
cept of material tailoring to play a significant role in
modern structures design. This refers particularly to
advanced mechanical and aerospace designs. Finally,
spread of advanced adaptive materials like shape mem-
ory alloys, electroactive polymer materials, etc., com-
bined with control strategies open new research areas
to further enhance the performance of future systems
(Housner et al., 1997).
One of the most promising exemplary application

of this technology is an integration of piezoelectric
actuators and sensors sub-systems within the master

structure – e.g., see review papers by Rao, Sunar
(1994) and Sunar, Rao (1999). The adaptive feature
is achieved through the converse piezoelectric effect,
i.e. the generation of localized strains in response to
the voltage applied to the actuator’s poles. This in-
duces strain field that changes the dynamic properties
of the structure.
Considering anisotropic thin-walled beams, in the

past years a number of analytical models and theories
of these structures have been proposed and validated.
A versatile and comprehensive theory of thin-walled
composite beams has been elaborated by e.g. Hodges
(2006) and his group – Yu et al., (2005), Kovvali,
Hodges (2012); as well as Librescu, Song and their
co-workers (Song, Librescu, 1993; 1997; Librescu,
Song, 2006). Later on, the studies on thin-walled com-
posite structures done by this group have been ex-
tended to smart systems. E.g. (Librescu et al., 1997)
analysed the closed-loop natural damped frequencies
of anisotropic cantilevered thin-walled beams exhibit-
ing bending-transverse shear twist coupling. The topic
has been later continued and extended to blast and
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sonic-boom analysis (Librescu, Na, 1998); and next
by Song et al. (2001) to cases of different modal cou-
plings.
The suggested approach proposes the generation

and use of a dynamic moment acting at the tip of the
beam. This method, being mathematically elaborated
by Lagnese (1989), is referred to as the boundary
moment control methodology. In control algorithms
this moment is usually related, via a prescribed func-
tional relationship, with one of the various kinematical
quantities characterizing the response of the structure
(Tzou, Zhong, 1992).
In the presented research the possibility to en-

hance the dynamic characteristics of a lightweight, can-
tilevered structures by linking the adaptive capability
of smart material and the structural tailoring tech-
nology is addressed. The discussed above method of
boundary moment control is extended to rotating sys-
tems with transverse-lateral bending modal coupling.
A control law relating the applied electric field with
a linear combination of transverse bending moment at
the beam root and free tip rotation measure is imple-
mented. This leads to a boundary value problem to
be solved. The submitted study is a further extension
of the previous research done by the authors on thin-
walled, rotating beams (Latalski et al., 2012; 2014),
as well as smart materials and active control strategies
Warminski et al., 2011).

2. Structural model and problem formulation

2.1. Beam model

Let us consider a slender, straight and elastic com-
posite, single cell thin-walled beam clamped at the

Fig. 1. Rotating thin-walled beam under consideration and reference frames.

rigid hub of radius R0 experiencing rotational mo-
tion as shown in Fig. 1. The length of the beam is
denoted by l, rectangular cross-section characteristic
dimensions by c and d, and the wall thickness by
h, and it is assumed to be constant spanwise. The
composite material is linearly elastic (Hookean) and
its properties may vary in orthogonal to the middle
surface directions. Two piezoelectric patches are em-
bedded within the laminate top and bottom flanges
as shown in Fig. 1c. It is assumed that the piezo-
electric material layers are polarized in the thick-
ness direction and exhibit transversely-isotropic prop-
erties, the surface of isotropy being normal to the
z-direction.
The structural model of the system under consid-

eration incorporates the following kinematic and static
assumptions:

1. The original shape of the cross-section is main-
tained in its plane, but is allowed to warp out of
the plane.

2. The concept of the Saint-Venant torsional model
is discarded in the favour of the non-uniform
torsional one. Therefore, the rate of beam twist
ϕ′ = dϕ/dx depends in general on the spanwise
coordinate x.

3. In addition to the primary warping effects (related
to the cross-section shape), the secondary warping
related to the wall thickness is also considered.

4. The transverse beam shear deformations γxy, γxz
are taken into account. These are assumed to be
uniform over the beam’s wall cross-section.

5. The stress in walls’ transverse normal (σnn) di-
rection can be neglected; also, due to the prismatic
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beam cross-section, the ratio of the wall thickness
to the radius of curvature at any point of the
beam’s cross-section is zero, therefore, the hoop
stress resultant (Nss) is negligible.

6. Both piezoelements embedded in the structure are
distributed symmetrically with respect to beam’s
cross-section mid-line and span the full length of
the beam; moreover, it is assumed they are acti-
vated simultaneously but out-of-phase.

2.2. Kinematic relations

2.2.1. Displacement field

Following the assumptions given in the previous
section the displacements of an arbitrary point A of
the cross-section are defined as follows – see for details
(Georgiades et al., 2014):

Dx = u0(x, t) + ϑy(x, t)

(

z − n
dy

ds

)

+ ϑz(x, t)

(

y + n
dz

ds

)

−G(n, s)ϕ′(x, t)

= u0(x, t) + ϑy(x, t)Z + ϑz(x, t)Y

−G(n, s)ϕ′(x, t),

Dy = v0 (x, t)− Y
(

1− cosϕ(x, t)
)

− Z sinϕ(x, t)

≈ v0 (x, t)−
1

2
Y
(

ϕ(x, t)
)2 − Zϕ(x, t),

Dz = w0 (x, t) + Y sinϕ(x, t)− Z
(

1− cosϕ(x, t)
)

≈ w0 (x, t) + Y ϕ(x, t) − 1

2
Z
(

ϕ(x, t)
)2
,

(1)

where u0, v0, and w0 are displacements of the point 0
(pole) located on the mid-axis ox and corresponding
to the considered one A; G(s, n) is a warping func-
tion and ϕ(x, t) denotes beam’s twist angle. Angles
ϑy(x, t) = γxz − w′

0 and ϑz(x, t) = γxy − v′0 represent
cross-sections’ rotations about respective axes y and z.
Moreover, in the above formula the moderately large
rotations about ox axis are allowed by the approxima-
tion cosϕ ≈ 1 − ϕ2/2. The later linearisation of the
respective resulting equations is performed after incor-
poration of this approximation.

2.2.2. Strains

Bearing in mind the above displacement relations
(1) the following strains formulas can be given:

εxx = ε(0)xx + nε(1)xx = u′0 + zϑ′y + yϑ′z −G(0)(s)ϕ′′

+
1

2
(v′0 − zϕ′)2 +

1

2
(w′

0 + yϕ′)2

+n

(

dz

ds
ϑ′z −

dy

ds
ϑ′y −G(1)(s)ϕ′′

)

, (2)

γxs = γ(0)xs + nγ(1)xs = (ϑy + w′
0)
dz

ds
+ (ϑz + v′0)

dy

ds
,

+ g(0)(s)ϕ′ + ng(1)(s)ϕ′

γxn = γ(0)xn = −(ϑy + w′
0)
dy

ds
+ (ϑz + v′0)

dz

ds
.

(2)

The three remaining strains εyy, εzz, γyz are iden-
tically equal to zero due to the cross-section non-
deformability assumption.

2.2.3. Velocities

The velocity vector Ṙ of an arbitrary point A of
the elastic body in the inertial frame X0Y0Z0 can be
obtained by differentiating its position vector with re-
spect to time. This requires evaluating the time deriva-
tive of the transformation matrix. Next, a skew sym-
metric matrix is defined to formulate an angular veloc-
ity vector in a global coordinate system as described
in, e.g., Shabana (2005). After appropriate manipu-
lations one arrives at

Ṙx =
[

−(Dx + x+R0) sinψ(t)

− (Dy + Y ) cos θ cosψ(t)

+ (Dz + Z) sin θ cosψ(t)
]

ψ̇(t)

+ Ḋx cosψ(t)− Ḋy cos θ sinψ(t)

+ Ḋz sin θ sinψ(t),

Ṙy =
[

(Dx + x+R0) cosψ(t)

− (Dy + Y ) cos θ sinψ(t)

+ (Dz + Z) sin θ sinψ(t)
]

ψ̇(t)

+ Ḋx sinψ(t) + Ḋy cos θ cosψ(t)

− Ḋz sin θ cosψ(t),

Ṙz =Ḋy sin θ + Ḋz cos θ,

(3)

where overdot means time derivative, so Ḋx, Ḋy, and

Ḋz terms correspond to velocities of deformation.

2.3. Equations of motion

The equations of motion of the rotating beam are
derived according to the extended Hamilton’s principle
of the least action considering both materials – i.e.
mono- (laminate) and multi-domain (piezoelectric) one

δ

t2
∫

t1

(

L+W
)

dt = 0, (4)

where L is the Lagrangian function composed of sys-
tem’s kinetic energy T , potential energy U , and elec-
trical enthalpy H for linear piezoelectric domain – see,
e.g., (Piefort, 2000; Mesecke-Rischmann, 2004);
the work of the external forces is given by theW term.
The kinetic energy of the system is given by

T =
1

2

∫

V

ρ ṘT ṘdV, (5)
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where designation ρ refers to material density and V
refers to the volume element; the potential energy of
the elastic system under consideration is given by

U =
1

2

l
∫

0

∫

c

h/2
∫

−h/2

(

σxxεxx

+ σxnγxn + σxsγxs
)

dn ds dx, (6)

where appropriate stress terms arise from the classical
laminate theory; c in second integral denotes integra-
tion along mid-line of the cross-section.
Regarding the electrical enthalpyH contribution to

the overall energy it was shown by Tzou and Zhong
(1992) and Librescu et al. (1993) that the in-plane
isotropic piezoelements that are spread over the entire
span of the beam, bonded symmetrically on the oppo-
site faces of the specimen and activated out-of-phase,
they generate a bending moment at the beam tip in re-
sponse to a PZT applied electrical field. This moment
does not enter the governing equations and is repre-
sented in boundary conditions as a nonhomogeneous

term M
(p)
y only – see later on Eq. (9)2.

The mentioned in the introductory part of the pa-
per composite structure tailoring technique enables,
among other things, the design of a system with re-
quested modal couplings. One of the possible effects in
the case of closed section thin-walled beams is flapping-
lagging bending transverse shear coupling. As shown
by, e.g., (Rehfield et al., 1990; Librescu, Song,
2006) this mode coupling can be achieved by a lam-
ination scheme following the rule α(z) = α(−z), where
α denotes the ply angle orientation measured from the
circumferential direction axis os being perpendicular
to the beam span ox (see Fig. 1c). This scheme is re-
ferred to as Circumferentially Uniform Stiffness con-
figuration or as Anti-Symmetric Lay-up Beam config-
uration.
Using such a ply-angle lamination scheme and as-

suming the presetting angle θ = 0 the equations of
motion are:

b1v̈0 − b1v0Ω
2 − b1Ω

2[Rx(x)v
′
0]

′

− a44(v
′′
0 + ϑ′z)− a34ϑ

′′
y = 0,

(b5 + b15)ϑ̈z − (b5 + b15)Ω
2ϑz − a22ϑ

′′
z

− a25(w
′′
0 + ϑ′y) + a44(v

′
0 + ϑz) + a34ϑ

′
y = 0,

b1ẅ0 − b1Ω
2[Rx(x)w

′
0]

′

− a55(w
′′
0 + ϑ′y)− a25ϑ

′′
z = 0,

(b4 + b14)ϑ̈y − (b4 + b14)Ω
2ϑy − a33ϑ

′′
y

− a34(v
′′
0 + ϑ′z) + a55(w

′
0 + ϑy) + a25ϑ

′
z = 0,

(7)

and the boundary conditions (geometric) at the beam’s
root x = 0:

v = 0, w = 0, ϑy = 0, ϑz = 0, (8)

and the dynamic BC at the free end x = l:

a44(v
′
0 + ϑz) + a34ϑ

′
y = 0,

a22ϑ
′
z + a25(w

′
0 + ϑy) =M (p)

y ,

a55(w
′
0 + ϑy) + a25ϑ

′
z = 0,

a33ϑ
′
y + a34(v

′
0 + ϑz) = 0.

(9)

In the above equations a dot symbol denotes the time
derivative and prime symbol corresponds to differen-
tiation with respect to the span coordinate (x). Ap-
pearing in the above equations (7)1 and (7)3 terms
incorporating

Rx(x) = R0(x− l) +
1

2
(x2 − l2) (10)

are contributions to the beam stiffness resulting from
the higher order terms in strain field due to centrifu-
gal deformation. Moreover, in the above equations, the
Coriolis terms as immaterial ones for the system’s dy-
namics, see (Leissa, Co, 1984) were skipped.
Commenting on the given equations of motion (7)

it is worth to emphasize that the modal coupling is
achieved by a25 and a34 terms. These two are differ-
ent from zero for any fiber orientation angles α except
0◦ and 90◦. It means that for these two specific cases
flapping and lagging bendings get fully decoupled.
Details concerning the step-by-step derivation of

these equations and calculation of inertia coefficients
bi and stiffness coefficients aij for the purely lami-
nated beam are given by Georgiades et al. (2014)
and Song, Librescu (1993). For the system with em-
bedded piezoelements updated formulas at intermedi-
ate calculations steps need to be used. Following the
approach proposed by Birman (1994) the contribu-
tion of piezoelectric material to the overall system stiff-
ness is taken into account in 2-D stretching, bending-
stretching, and bending stiffness quantities – Aij , Bij ,
and Dij , respectively. These are calculated by integra-
tion of the reduced elastic coefficients Qij through the
thickness of the multi-layered, non-homogenous wall.
After certain mathematical manipulations one arrives
at the formula for the boundary bending moment in
(9)2 for the discussed case to be

M (p)
y =

∫

c

E3
h(p)

2
δ(p)e31

[

z

(

1− A12

A11

)

+
dy

ds

B12

A11

]

ds, (11)

where E3 is electric field acting solely in the PZT
thickness direction and uniform over its volume, δ(p) is
tracker to be equal to 1 for profile flanges, and 0 for pro-
file webs; h(p) is the piezoactuator thickness, and e31
is the piezoelectric constant (Song, Librescu, 1996).
It is observed that for the discussed case the piezo-

electrically induced boundary bending moment is pro-
portional to the applied electric field. Therefore, for
feedback control task, it is convenient to express this
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electric field through a prescribed relationship with
the mechanical quantities characterizing the beam’s re-
sponse. In the current research the linear combination
of bending moment at the beam root and free tip ro-
tation measure is implemented

M (p)
y = k1ϑy

∣

∣

x=l
+ k2ϑ

′
y

∣

∣

x=0
, (12)

where k1 and k2 are proportional feedback gains.

2.4. Solution procedure

The solution of the problem is done according to
the Extended Galerkin Method. For this purpose the
space and time coordinates get separated and prob-
lem’s unknown variables v0, w0, ϑy and ϑz are writ-
ten as a sum of linear combinations of the appropriate
functions’ products

v0(x, t) =

N
∑

j=1

Vj(x) qj(t), ϑy(x, t) =

N
∑

j=1

Yj(x) qj(t); (13)

w0(x, t) =
N
∑

j=1

Wj(x) qj(t), ϑz(x, t) =
N
∑

j=1

Zj(x) qj(t). (14)

In the above Vj(x), Wj(x), Yj(x), and Zj(x) are con-
sistent admissible functions which have to fulfill all
the geometric boundary conditions while not violating
complementary boundary conditions (Baruh, 1999);
while qj(t) are the generalized coordinates. For the
discussed problem the trial functions are represented
by multiple order polynomials. Substituting the given
above approximations (13) and (14) into equations of
motion (7) and using appropriate boundary conditions
(9), integrating with respect to the spanwise coordi-
nate x one arrives at the algebraic eigenvalue problem

Mq̈+Kq = 0, (15)

Fig. 2. Stiffness coefficients vs fiber orientation angle; a22 – chordwise bending, a33 – flapwise bending, a44 – chordwise
shear, a55 – flapwise shear, a25 – chordwise bending-flapwise shear, a34 – flapwise bending-chordwise shear.

where q is a 4N column matrix whose elements are
individual qj(t) terms and M, K are 4N × 4N sym-

metric, square matrices; the control momentM
(p)
y (12)

formula is included in the K matrix.

3. Numerical examples and discussion

3.1. Geometry and material data

The geometric characteristics of the rotating beam
are displayed below (see also Fig. 1), while the compos-
ite material and piezoceramic constants are gathered
in Table 1.

d = 0.0254 m, c = 0.00508 m, h = 0.001 m,

l = 0.254 m, R0 = 0.1l.

Table 1. Graphite epoxy and piezoceramic
material data.

Composite material

E1 = 206.751 × 109 Pa, E2 = E3 = 5.17× 109 Pa

G12 = G13 = 3.11× 109 Pa, G23 = 2.55× 109 Pa

ν21 = ν31 = 0.00625, ν32 = 0.25

ρ = 1528.15 kg/m3

Piezoelectric ceramics

C11 = C22 = 139.0 × 109 Pa, C12 = 77.7 × 109 Pa

C13 = C23 = 74.298 × 109 Pa

C33 = 115.0 × 109 Pa, C44 = 25.58 × 109 Pa

ρ = 7493.9 kg/m3

The results from numerical calculations are ob-
tained by the code prepared in Mathematica software.
To help in further analysis, plots of stiffness coefficients
aij present in (7) with respect to fiber orientation α
are given in Fig. 2. It is clear that for α = 0◦ and
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α = 90◦ both bendings get fully independent; on the
other hand, coupling extrema are observed for fibers
set at approximately 15◦ from the beam spanwise di-
rection (i.e., 75◦ and 105◦).
At the next step, the impact of solely presence

of piezoactuators on the structure’s dynamics is ex-
amined (e.g., piezoceramic is embedded in the struc-
ture, but the controller is switched-off). Therefore, the
Campbell diagram for the first two bending modes
is prepared (Fig. 3), while setting the fiber orienta-
tion α to 0◦. The ω1 and ω2 correspond to the flap-
wise and chordwise bending natural frequencies (these
are fully decoupled for α = 0), respectively. Capital
Ω represents hub rotation frequency. The structure
with the actuators is denoted as “piezo”, while the
one without the actuators is the “raw” one. A strong
influence of the actuators’ presence to both bend-
ing frequencies is visible. This is related to the dif-
ference in both materials elastic properties and the
significant difference in their densities. Moreover, one
can notice the fact that the flapwise frequency is
more sensitive to the rotating speed than the chord-
wise one. This observation is well documented in the
literature.

Fig. 3. Campbell diagram for the considered beam; config-
urations with and without piezoelement are compared.

Figure 4 depicts the open-loop (k1 = k2 = 0)
and closed-loop (k1 6= 0 or k2 6= 0) eigenfrequen-
cies of the system for selected fiber orientation an-
gles representing weak (a), moderate (b), strong (c)
and zero (d) modal coupling cases. While prepar-
ing these plots the dimensionless gain coefficients k1
and k2 were used by normalizing with respect to
the beam’s length and bending stiffness a33(α = 0)
as follows: k1 = k1l

2/a33|(α=0), k2 = k2l/a33|(α=0).
The solid line corresponds to the first natural fre-
quency ω1 and the dashed line to the second one
ω2. It is observed that the ω2 is almost in-sensitive
to the control action apart from the fibers’ ori-
entation α value. The significant influence of the

Fig. 4. Campbell diagrams for the controlled beam. In-
fluence of different proportional feedback gains scenarios
represented by the k1 and k2 pairs on eigenfrequencies ω1

(solid lines) and ω2 (dashed). Cases of the fibers’ orienta-
tion α: a) α = 30◦, b) α = 45◦, c) α = 60◦, d) α = 90◦.
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k1 and k2 values is observed only for a low hub
speed Ω and low values of α angle. For α greater
than 60◦ the proportional controller is not efficient.
Moreover, for the assumed geometrical and mate-
rial properties of the structure, its first natural fre-
quency ω1 is always higher than the hub rotation fre-
quency, independently of the control algorithm and
gain.
To consider the case of bending frequencies cross-

over (ω1 = ω2), a zoom of one of the diagrams is pre-
pared (Fig. 5). The possibilities to control the position
of the crossing point using a proportional feedback are
clearly distinctive, although the results for k1 = 0.5,
k2 = 0.5 and k1 = 1.0, k2 = 0 are similar.

Fig. 5. Zoom of Fig. 4a. Cross-over of ω1 and ω2 character-
istics for α = 30◦ and different feedback controls.

Different results for the operation of the considered
controllers are observed while the flapwise/chordwise
amplitudes ratios are studied – Fig. 6. The significant
influence of the k2 gain is observed, much stronger than
the k1 one. This is valid for all fiber orientations α,
obviously except the cases α = 0◦ and α = 90◦, when
both bendings are uncoupled. The efficiency of the pro-
portional controller to change the amplitudes ratio is
decreasing while α increases. This is also related to
the change in stiffnesses a22 and a33 with respect to α.
This is confirmed in the natural frequencies plot given
in Fig. 7.
The obtained results show that for small α values

(less than 60◦) fibers’ orientation is not very significant
for the flapwise natural frequency. For higher values
this is becoming important and for the limit value α =
90◦ ω1 is up to three times higher than for for α = 45◦.
On the other hand, the chordwise natural frequency is
obviously dependent on fiber orientation and nearly
independent on the hub speed.

Fig. 6. Influence of different proportional feedback gains
scenarios represented by the k1 and k2 pairs on the flap-
wise/chordwise amplitudes ratio for selected α fibers’ ori-

entations.
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Fig. 7. Beam natural frequencies with respect to the fiber angle α for a system without control.

3.2. Closing remarks

In this article, an investigation of the control of free
vibration of thin-walled, rotating cantilever beam has
been presented. It is demonstrated that inclusion of
thin strips of piezoceramic impact the dynamic char-
acteristics of the system, even without control actions.
Next, further possibilities of systems’ dynamic char-
acteristics enhancements with the help of the con-
trol method are shown. The results highlight the roles
played by the discussed feedback control laws for the
overall control of beam structures. It is shown that,
due to directional properties of a laminate, different
effects can be achieved by control methods. Moreover,
the outcomes illustrate the capabilities of the adopted
feedback control method to shift the cross-over fre-
quency point characteristic for coupled modes dynam-
ics observed in composite rotating beam structures.
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