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The paper is another step in discussion concerning the method of determining the distributions of
pulses forcing vibrations of a system. Solving a stochastic problem for systems subjected to random
series of pulses requires determining the distribution for a linear oscillator with damping. The goal of the
study is to minimize the error issuing from the finite time interval. The applied model of investigations is
supposed to answer the question how to select the parameters of a vibrating system so that the difference
between the actual distribution of random pulses and that determined from the waveform is as small as
possible.
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1. Introduction

The problems of theoretical and applied mechanics
in the broad sense are the subject of numerous stud-
ies carried out currently at the Faculty of Mechani-
cal Engineering and Robotics of the AGH University

of Science and Technology in Cracow. The Faculty
develops the most up-to-date domains of mechanics
including vibroacoustics which combine the problems
of the theory of linear vibrations (Kasprzyk, 2011;
Wiciak, Trojanowski, 2014), engineering dynam-
ics, theoretitical acoustics (Snakowska, Jurkiewicz,
2010; Rdzanek et al., 2011), and technical acous-
tics (Piechowicz, 2011;Barański, Wszołek, 2013).
Research is carried out in the areas connected with
the problems of propagation of the noise produced
by road traffic, wind power plants (Kasprzak et al.,
2014;Wszołek et al., 2014), and industry, especially
ducted systems with flow (Jurkiewicz et al., 2012).
These studies are aimed at reducing vibroacoustic
noise to a minimum and application of vibroacous-
tic signals in assessment and control of technologi-
cal processes (Raczka et al., 2013; Sibielak et al.,
2013; Konieczny et al., 2013). Vibroacoustic diag-
nostics also includes studies regarding the theory of
vibration processes occurring in vibrating systems as
well as studies concerning semi-active and active meth-
ods of reduction of vibrations (Wiciak, 2007; Tro-
janowski,Wiciak, 2010). The study presented in this

paper is a continuation of the aforementioned tradition
of combining science and technology, since the devel-
opment of a mathematical model was inspired by an
attempt to construct a measuring device that would
be able to detect a sequence of both large and small
dust particles hitting a sensor in the transported dust
stream. The model of investigations connected with
analysis of vibrations forced by stochastic pulses can be
placed between the studies directed at solving technical
problems and those carried out in other academic cen-
tres, namely, the analyses closely connected with math-
ematics, using probabilistic and statistical methods in
the theory of vibrations (Roberts 1972;Tylikowski,
Markowski, 1986; Iwankiewicz, Nielsen, 1992;
Koyluoglu et al., 1994; Dipaola, Vasta, 1997; So-
biechowski, Socha, 2000; Huang et al., 2000). In
the present paper we deal with application of prob-
lems of the linear vibrations theory to vibroacoustic
diagnostics, where the vibration signal, that is, the de-
flection of the system from its balance position, will
be used for assessment and execution of technological
processes.

2. Distribution of random pulses acting

on a vibrating system as a function of its motion

Let us consider a one-dimensional of damped oscil-
lator (Jabłoński, Ozga, 2006) given by the equation



646 Archives of Acoustics – Volume 39, Number 4, 2014

Fig. 1. Vibrations of four systems with parameters b and c given in the diagram forced
by a pulse of the value η1 = 845 778.47 s−1.

d2x
dt2

+ 2b
dx
dt

+ a2x = f(t), (1)

with the following initial coditions:

x(0) = 0 and x′(0) = 0. (2)

In the mathematical model (Jabłoński, Ozga,
2008; 2009) used for determination of distributions of
random pulses forcing vibrations of a one-dimensional
physical system (Jabłoński, Ozga, 2010; Jabłoński
et al., 2011), the force f(t) is defined by two stochas-
tically independent variables, random amplitudes ηi,
and random instants of time ti at which the pulses
occur:

f(t) =
∑

ti<t

ηiδ(t− ti), (3)

where δ(t − ti) are Dirac distributions at the time ti.
The time intervals (ti − ti−1) between the subsequent
pulses with the exponential distribution F (τ), namely:

F (τ) =

{

1− exp(−λτ) if τ ≥ 0,

0 if τ < 0.
(4)

The constant λ is the pulse rate (Jabłoński, Ozga,
2012), ηi is a sequence of independent identically dis-
tributed random variables with finite expectation and
it assumes a finite number of values {η1, η2., . . . , ηi}
with probabilities pi = p(ηi).
With the assumptions defined above the function

of vibrations (Jabłoński, Ozga, 2013) for a one-
dimensional physical system influenced by f(t) has the
form

x(t) =
1

c

∑

0<ti<t

ηi exp(−b(t− ti)) sin(c(t− ti)), (5)

where the damping coefficient b [s−1] and the frequency
c =

√
a2 − b2 [s−1] are parameters of the vibrating sys-

tem.
In earlier studies (Ozga, 2014), while analyzing

a finite time interval, the differences between the distri-
bution pi(t) determined from the function of vibrations
and the distribution imposed in the simulation pi are
the smaller, the stronger is the damping coefficient b. In
this work the problem of seeking the optimum param-
eters of a system was complemented with an analysis
of the influence of a modified frequency of vibrations
c on the errors in the determined distributions. Sim-
ulations were conducted for four harmonic oscillators
with three different values of the quotient b/c (Fig. 1)
labeled with A, B, C, and D.
The parameters c, b, and ηi from the case A applied

in the simulations discussed in this paper correspond,
within the framework of electro-mechanical analogies
to a system consisting of an RLC circuit with induc-
tivity L = 5 mH, capacity C = 0.2 nF, and a voltage
source (Ozga, 2013). The parameters of oscillators B,
C, and D were selected according to the needs of the
simulation.

3. Computer simulations

In simulations conducted in MATLAB environ-
ment, in the first step we generate pseudo random ex-
citations f(t). The intervals between subsequent pulses
∆i = (ti − ti−1) are randomized according to the for-
mula

∆i = − 1

λ
ln(1− rand). (6)
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The pseudorandom variable rand reaches values
drawn from the standard uniform distribution on the
open interval (0,1). In all simulations which are con-
sidered in this paper, the pseudorandom variable ηi
assumes three values: η1 = 845778.47 s−1, η2 = η1/2,
and η3 = η1/10. Due to the stochastic character of
the phenomenon these pulses are randomized in the
form of two distributions Φi which were chosen in such
a way that all pulses should occur and in both cases
E (η) should have the same value 447416.8 s−1. These
distributions are:

Φ1 : p1 = 0.33, p2 = 0.33, p3 = 0.34;

Φ2 : p1 = 0.25, p2 = 0.51, p3 = 0.24.

Due to the fact that on the basis of observation it
is not possible to foresee x(t) at any time instant, all
the considerations below compare the systems A, B,
C, and D, which vibrate under the influence of pulses
generated in MATLAB environment occurring at the
same time ti and having the same amplitude ηi. In
this way we analyze the signals received in identical
conditions and on the same time interval. However,
the differences are significant – under the influence of
a pulse ηi, depending on parameters c and b of the
system, some vibrations of the system expire decay
faster than others (Fig. 2).
Describing roughly the method of determining the

distributions, one should first determine the stochastic
moments mi(t), i = 1, 2, 3, from the waveform x(t) of
the harmonic oscillator

mi(t) ∼=
1

[t/h]

∑

kh<t

xi(kh), (7)

Fig. 2. Vibrations obtained as a result of simulation of four harmonic oscillators labeled A, B, C, and D forced
by pulses of the values η1, η2, and η3 corresponding to λ = 103 s−1 and Φ1.

where x is the deflection of the system from the bal-
ance position, mi(t) is the i-th stochastic moment of
the random variable x, and h is the interval of time
between successive measurements equal to 10−6 s.
The determined values of stochastic moments mn

are put in the Eqs. (8) in order to determine the dis-
tributions pi (Fig. 3, Fig. 4)

k
∑

i=1

pi

[

(mi(t)m1(t)−mi+1(t))ηi

+
n
∑

j=1

(

n
j

)

m(n−j)(t)m1(t)η
(j+1)
i

C(j+1)

C(1)cj

]

= 0, (8)

where k is the number of the sought values of random
amplitudes ηi for i = 1, 2, . . ., k−1. We obtain an ad-
ditional equation using (9)

k
∑

i=1

pi = 1 (9)

and for j > 1 and for even j

C(j) =
j!

j/2−1
∏

r=0
((jb/c)2 + (2r)2)

c

jb
, (10)

whereas for odd j > 0,

C(j) =
j!

(j−1)/2−1
∏

r=0

((jb/c)2 + (2r + 1)2)

. (11)
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Fig. 3. Probabilities pi and estimators pi(t) corresponding to λ = 103 s−1 and Φ1.

Fig. 4. Probabilities pi and estimators pi(t) corresponding to λ = 102 s−1 and Φ2.

Analyzing the distributions presented in Figs. 3
and 4 for two samples received in simulation, we can
compare the distances between the curves – the im-
posed distribution pi and the distributions determined
from the waveform x(t), labeled respectively pAi(t),
pBi(t), pCi(t), and pDi(t). The differences between
pi−pAi(t), pi−pBi(t), pi−pCi(t), pi−pDi(t) depend on
time in which we conduct the analysis, the pulse rate,
and the amplitude of the pulse for which we determine
the distributions. For the strongest pulse η1, the differ-
ences between the imposed distribution and the calcu-
lated one, no matter which oscillator is taken into con-
sideration, are the smallest, and for the weakest pulse
η3 the differences are the largest. These conclusions are
confirmed by statistical investigations discussed in the
next section of the paper.

4. Statistical investigations

In this chapter we discuss a part of the investiga-
tions consisting in performing 100 simulations in both

distributions Φ1 and Φ2 for four different values of the
pulse rate λ equal to 10, 102, 103, and 104 s−1, in or-
der to draw the reader’s attention to the classification
of signals from the point of view of their statistical
properties. In the study we analyze the measures of
central tendency describing the location of the differ-
ences pi − pi(t) as well as the measures of dispersion
describing the dispersion of the results for each of the
simulations on the time interval from 0 to 900 seconds
with a step of 6 seconds. The results of analyses show
that regardless of the distribution Φi or the pulse rate
λ, while analyzing the mean value, median, standard
deviation, kurtosis, and skewness for the histograms
from the differences pi − pi(t) which follow from the
simulation, we come to conclusions presented below.
1. The strongest pulses η1 are determined with the
least error, while the weakest η3 are determined
with the largest error (Fig. 5, Fig. 6, Table 1, Ta-
ble 2).

2. The smallest differences pi − pi(t) of all pulses ηi
were registered for the system with strong damp-
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ing, short pulse response, and high values of the
modified frequency of vibrations c – oscillator B
(Fig. 5, Fig. 6).

3. At low intensities λ (Fig. 7), the impact of a single
pulse or a series of subsequent pulses is so high that
the standard deviation σ read from the histograms

Fig. 5. Histograms of pi−p
i
(600 s), where pi = p(ηi), corresponding to λ = 102 s−1, Φ2. Consecutive columns of the panels

correspond to cases A, B, C, and D, respectively.

Fig. 6. Histograms of pi−p
i
(900 s), where pi = p(ηi), corresponding to λ = 104 s−1, Φ1. Consecutive columns of the panels

correspond to cases A, B, C, and D, respectively.

may not decrease with the passage of time as one
could expect, for instance:

σ (pA1 − pAi(180 s)) > σ (pA1 − pAi(120 s))

and

σ (pB2 − pB2(840 s)) > σ (pB2 − pB2(780 s)) .
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Additionally, for low intensities for the pulse

η1σ (pB1 − pB1(t)) > σ (pD1 − pD1(t)),

but for weaker pulses η2 and η3 the relationships
are reversed

σ (pB2 − pB2(t)) < σ (pD2 − pD2(t))

Table 1. Basic statistics corresponding to histograms of pi − p
i
(600 s), λ = 102 s−1, Φ2.

Statistics i
Case

A B C D

Mean

1 5.1190 × 10−5 −2.2000 × 10−7 −1.1620 × 10−5 −4.5500 × 10−6

2 5.9253 × 10−4 1.1933 × 10−4 9.7761 × 10−4 6.0732 × 10−4

3 −6.4375 × 10−4 −1.1909 × 10−4 −9.6592 × 10−4 −6.0273 × 10−4

Standard deviation

1 7.4935 × 10−4 1.5673 × 10−4 5.0549 × 10−4 1.7824 × 10−4

2 3.8564 × 10−3 1.4565 × 10−3 4.8441 × 10−3 2.8022 × 10−3

3 4.4298 × 10−3 1.5428 × 10−3 5.0882 × 10−3 2.8696 × 10−3

Median

1 9.3000 × 10−5 −1.5000 × 10−5 4.6500 × 10−5 8.5000 × 10−6

2 6.6900 × 10−4 3.8250 × 10−4 1.3300 × 10−3 5.0750 × 10−4

3 −6.0650 × 10−4 −2.8650 × 10−4 −1.4450 × 10−3 −5.6950 × 10−4

Skewness

1 −4.2739 × 10−1 2.7144 × 10−2 −6.1966 × 10−1 −3.1756 × 10−1

2 −1.8468 × 10−1 −5.6804 × 10−1 2.4805 × 10−1 −2.5130 × 10−1

3 1.7856 × 10−1 4.9931 × 10−1 −2.2059 × 10−1 2.9918 × 10−1

Kurtosis

1 3.1574 3.0928 3.3301 3.0170

2 3.1598 2.9591 2.9311 3.4330

3 3.1631 3.0240 2.8883 3.4532

Table 2. Basic statistics corresponding to histograms of pi − p
i
(900 s), λ = 104 s−1, Φ1.

Statistics i
Case

A B C D

Mean

1 2.6827 × 10−4 5.6990 × 10−5 −2.0349 × 10−4 9.3290 × 10−5

2 1.1186 × 10−3 1.5275 × 10−4 −3.4724 × 10−4 3.3904 × 10−4

3 −1.3868 × 10−3 −2.0977 × 10−4 5.5085 × 10−4 −4.3229 × 10−4

Standard deviation

1 1.0841 × 10−3 3.0540 × 10−4 1.1843 × 10−3 4.9184 × 10−4

2 3.9104 × 10−3 1.4346 × 10−3 5.3374 × 10−3 3.0309 × 10−3

3 4.9081 × 10−3 1.6926 × 10−3 6.3831 × 10−3 3.4921 × 10−3

Median

1 1.6750 × 10−4 1.2350 × 10−4 −3.6250 × 10−4 4.3000 × 10−5

2 5.7300 × 10−4 −1.1500 × 10−5 −2.1400 × 10−4 −1.3050 × 10−4

3 −5.6750 × 10−4 −1.5850 × 10−4 2.2500 × 10−4 2.4500 × 10−4

Skewness

1 −1.1069 × 10−1 −3.2801 × 10−1 2.9302 × 10−1 2.3606 × 10−1

2 1.9344 × 10−1 1.3264 × 10−1 1.7494 × 10−1 2.9513 × 10−1

3 −1.4594 × 10−1 −5.2782 × 10−2 −1.9689 × 10−1 −3.0584 × 10−1

Kurtosis

1 2.6717 2.6814 2.9406 2.4178

2 2.7303 2.3847 3.1724 2.7182

3 2.8337 2.3998 3.2121 2.6865

and

σ (pB3 − pB3(t)) < σ (pD3 − pD3(t)) .

This means that although the strongest pulse is de-
termined more precisely, the remaining ones are bi-
ased with a larger error.
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Fig. 7. Standard deviations pi − p
i
(t) corresponding to λ = 10 s−1 and Φ1.

5. Conclusions

The applied model of investigations was supposed
to provide an answer to the question about how to se-
lect parameters of a vibrating system so that to elim-
inate the difference between the actual distribution of
random pulses and that determined from the wave-
form as much as possible. Statistical investigations per-
formed for 100 simulations for each of the two distri-
butions Φ1 and Φ2 for four different values of the pulse
rate λ equal to 10, 102, 103, and 104 s−1, over the time
interval from 0 to 900 seconds with the step of 6 sec-
onds proved that regardless of the distribution Φi or
the pulse rate λ, the smallest differences pi − pi(t) of
all pulses ηi were registered for the system with strong
damping, short pulse response, and high value of the
modified frequency of vibrations c represented by os-
cillator B (Fig. 5, Fig. 6).
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