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Glottal waveform models have long been employed in improving the quality of
speech synthesis. This paper presents a new approach for modeling the glottal flow.
The model is based on three control volumes that strike a one-mass and two-springs
system sequentially and generate a glottal pulse. The first, second and third control
volumes represent the opening, closing and closed phases of the vocal folds, respec-
tively. The masses of the three control volumes and the size of the first one are the
four parameters that define the shape, pitch and amplitude of the glottal pulse. The
model may be viewed as parametric approach governed by second order differential
equations rather than analytical functions and is very flexible for designing a glottal
pulse. The glottal pulse generated by the present model, when compared with those
generated by Rosenberg, LF and mucosal wave propagation models demonstrates
that it appropriately represents the opening, closing and closed phases of the vo-
cal fold oscillation. This leads to the validity of our model. Numerical solution of
the present model has been found to be very efficient as compared to its analytical
solution and two other well-known parametric models Rosenberg++ and LF. The
accuracy of the numerical solution has been illustrated with the help of analytical
solution. It has been observed that the accuracy improves by increasing the size of
the first control volume and may decrease insignificantly with increase in the mass
of any of the control volumes. Two experiments with the present model support
its successful implementation as a voice source in speech synthesis. Thus our model
renders itself as an efficient, accurate and realistic choice as a voice source to be
employed in real-time speech production.

Keywords: control volumes, spring-mass system, vocal folds, Rosenberg glottal
model, LF glottal model.

1. Introduction

Synthesizing high quality natural sounding speech has been an important
topic of research for many years. There is a wide range of applications such as
teaching aids, telecommunication, messaging systems, alternative access to infor-
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mation, augmentative communication, foreign language instruction and tutoring
systems, first language instruction for hearing impaired, job training simulations,
technical support for complex tasks, automated announcement systems, infor-
mation and service access and speech-to-speech translation systems, in which
speech synthesis systems are currently employed. All these areas of applications
may benefit from achieving a natural sounding speech synthesis.
An efficient speech production model is fundamental for obtaining good per-

formance in applications such as speech synthesis, coding. The vocal folds hold
a central place in the description of such a model. The intelligibility of speech is
mostly attributed to the configuration of vocal tract while the glottal source is
essential in voice quality and speaker identity. For more accurate synthesis and
analysis of speech, the observation of physical effects in the vocal folds and their
inclusion in the model of vocal source are very important. Many approaches have
been proposed in the literature for the modeling of vocal folds action. However,
parametric and physical models are the most widely known approaches for this
purpose.
In physical models, the oscillatory characteristics of the vocal folds are pre-

formed through numerical simulations based on a physical description of the
vocal fold system (Flanagan, Landgraf, 1968; Ishizaka, Flanagan, 1972;
Liljencrants, 1991; Pelorson et al., 1994; Herzel, Knudsen, 1995; Story,
Titze, 1995; Berry, Titze, 1996; Lous et al., 1998; de Vries et al., 1999;
Gunter, 2003). On the other hand parametric models parameterize the glottal
flow or its first-time derivative in terms of piecewise analytical functions for dif-
ferent phases of the glottal cycle. To facilitate the analysis of the source signal,
and to enable efficient characterization in terms of a small set of parameters,
parametric source models have proven very useful.
Various parametric glottal models have been proposed in the literature (Ro-

senberg, 1971; Rothenberg et al., 1975; Fant, 1979a; 1979b; 1982b; Fant
et al., 1985; Ananthapadmanabha, 1984; Hedelin, 1984; Fujisaki, Ljung-
qvist, 1986; Price, 1989; Klatt, Klatt, 1990; Schoentgen, 1993; Qi, Bi,
1994; Veldhuis, 1998). However, they share many common features, and they
can generally be described by three to five parameters plus the fundamen-
tal frequency. One of the popular models to quantify the glottal-pulse is the
Liljencrants-Fant (LF) model where the shape of the glottal-pulse is described
by four parameters (Fant et al., 1985). Unfortunately, its use in speech models
is limited because of its computational complexity and inefficiency. This model
involves a non-linear equation whose solution leads to the complex computation
of generation parameters from the specification parameters. However, Raymond
Veldhuis presents an alternative model for the LF model, which is derived from
the Rosenberg model and calls it Rosenberg++ model (Rosenberg, 1971; Fant
et al., 1985; Veldhuis, 1998). The Rosenberg++ model has the same features as
the LF model but it has the advantage over the later that it is computationally
more efficient.
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This work presents a four-parametric glottal model that simulates the pulse
generated by the vocal folds action by a sequential interaction of three control
volumes with a spring-mass system. The masses of these control volumes and
the size of the first control volume are the controlling parameters that deter-
mine the shape, pitch and amplitude of the pulse. The present approach may
be regarded as modeling the vocal folds oscillation and unsteady airflow collec-
tively. This model sets a new dimension in the paradigm of parametric models
as the glottal flow is represented by differential equations rather than by analyt-
ical functions, whose solution may be found numerically as well as analytically.
Its validity, accuracy and efficiency have been established by various criteria.
The effects of variation in masses and the size of the first volume on the accu-
racy of the numerical solution have also been shown. The present model may
practically be used in real-time speech production because of its computational
efficiency.
Four more sections follow the present section. In Sec. 2, we describe our

proposed glottal model with geometrical view. We also develop its mathematical
formulation, which results in a system of three initial value problems coupled
with each other in a sequential manner. Section 3 describes how to obtain the
numerical solution of this system. Section 4 is dedicated for the results and
discussion. In this section, we present the glottal pulse generated by our model
and demonstrate how the masses of the first and second control volumes influence
its shape and the size of the first control volume governs its amplitude. The
validity, accuracy and efficiency of the numerical solution are then illustrated.
At the end of this section, we give a comparison of the original glottal flow,
extracted from vowel /a/ by the inverse filter technique, with the model flow.
The waveform of vowel /a/ generated from VOX software (Kob, 2004) having
source as our proposed glottal model has also been shown. Section 5 is reserved
for the conclusions.

2. Glottal model

This paper presents a new parametric approach for modeling the glottal pulse.
The concept has been derived from the real physical process of measuring this
pulse. In one cycle of vibration, the vocal folds chop the blowing air into three
segments during its opening, closing and closed phases. In the segment of the
opening phase, there is an increase in the glottal volume flow while a decrease
in the glottal volume flow and negligible or zero glottal volume flow occur in the
segments of closing and closed phases, respectively. We assume that the vocal
tract is not coupled to the glottis thus allowing these three segments to enter
into the space. In the space, the variation in volume flow rate generates pressure
waves, which travel in the direction of flow. These traveling pressure waves strike
the physical media like a microphone whenever it comes on its way, and impose
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its vibratory characteristics on it. The response of the physical media is just the
measurement of the glottal pulse.
In the present model we generate the glottal pulse by a novel approach that

is quite simple and very efficient. We consider three control volumes of constant
densities and sizes that strike successively to a one-mass and two-spring system
with their appropriate respective time periods and generate an approximated
glottal pulse. These control volumes may be regarded as containing, in order,
the air coming out of the vocal folds in their opening, closing and closed phases
during one complete cycle. Although there will be density variations within the
flow coming out during each of the opening and closing phases, lumping the
phase-wise flow in three control volumes renders phase-wise constant densities
so that each control volume is characterized by its own density and size. This is
a great simplification as it no more requires unsteady airflow analysis. Moreover,
the density gradients present in the glottal flow are consequences of the vocal
folds oscillation and, in turn, determine the attributes of the glottal pulse. In the
present model, these attributes are determined by the densities and sizes of the
control volumes and we will see later that the masses of these control volumes
control the pitch and shape of the pulse and the size of the first control volume
determines its amplitude. These constitute the four parameters of our model
that together with a spring-mass system characterize the vocal fold oscillation
and determine the properties of the pulse generated by the present model. Thus
the present approach may be regarded as modeling the airflow and fold oscil-
lation collectively. The schematic diagram of the present model may be viewed
in Fig. 1.

Fig. 1. Pulse generation in the present model.

In view of the above description, the present model is parametric in nature
but it carries the physical sense of airflow in the form of three control volumes and
that of the vocal folds oscillation due to the presence of the spring-mass system in
the model. It simplifies and approximates the physical process of measuring the
glottal flow as it encompasses the gradient of flow during one complete cycle of
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the vocal folds vibration into three control volumes and defines a new dimension
for the investigation of speech production on the basis of control volumes.
Now we give formal description of our model followed by the presentation of

certain parametric relations and the mathematical formulation.

2.1. Formal description

Let V1, V2 and V3 be the three control volumes related to the opening, closing
and closed phases of our glottal model, where M1, M2 and M3 are the masses
contained in these control volumes, respectively. Densities related to these control

volumes may be expressed as ρi =
Mi

Vi
, where i = 1, 2, 3. We consider a spring-

mass system consisting of two springs and one mass M together with three
control volumes joined in series as shown in Fig. 1. We assume this mass to
be negligible as compared to M1, M2 and M3. Let K be the spring constant
of this system and C be its damping constant. The interaction of three control
volumes with the spring-mass system represents the glottal model as described
below.
In the first step, the control volume V1 strikes with the massM of the spring-

mass system and is attached to it so that the mass of the spring-mass system
becomes M + M1. Since M is negligible in comparison with M1, we take the
total mass of the system to be M1. Let the density ρ1 of the control volume V1

be greater than the normal density ρ0 of the fluid (air at temperature 20◦C). As
the volume V1 strikes the spring-mass system, it exerts a force, in the direction
of flow proportional to ρ1 − ρ0 on it which consequently starts oscillation with a
time period, say, T01. It may be noted that the mass of the system remains M1

for the period
(
T01

2

)
. The above description represents the opening phase of

the glottal model. For the closing phase, we suppose that when the spring-mass

system completes its half time period
(
T01

2

)
, the control volume V2 strikes the

system and is attached to it resulting into oscillation of the spring-mass system
with a different time period, say, T02. In this phase, the mass of the system

becomes M2 and remains so for the period
(
T02

2

)
. The force exerted in this

phase is equal and opposite in sign to that exerted in the opening phase so that
at the end of the closing phase, the system comes to its original position. We
now assume that the control volume V3 strikes the system when half the time

period
(
T02

2

)
of the spring-mass system is completed. Since the third control

volume V3 is related to the closed phase of the glottal model in which the vocal
folds are fully closed and there is no volumetric flow rate, the interaction of V3

with the spring-mass system will not exert any force on the system. Under the



700 T.M. Qureshi, K.S. Syed

condition of no force on the system, the damping factor may be assumed to be so
high that it stops the oscillation of the spring-mass system abruptly. Physically,
the situation of the closed phase may be conceived by taking ρ3 = ρ0. We denote
the time period of this closed phase by T03.
From the above description we note that the independent parameters of our

model are M1, M2, M3 and V1. V2 is not independent as it is so chosen that the
force exerted by the second control volume on the spring-mass system is equal
in magnitude and opposite in sign to that exerted by the first control volume.
V3 is determined by the equation ρ3 = ρ0. It may be noted that in terms of
the number of parameters, our model matches those that require specification of
only four parameters.

2.2. Parametric relations

We now present the parametric relations for the calculation of the time period
and the force of each phase of the glottal model.
Let Ti be the half of the time period T0i of the i-th phase of the model. Then

Ti =
T0i

2
= π

√
Mi

K
, i = 1, 2, 3. (1)

It may be noted that the pitch period of glottal pulse becomes
3∑

i=1
Ti.

Forces exerted by the three control volumes on the spring-mass system are
in the transverse direction and may be expressed as

{
Fi = (−1)i+1 (ρ1 − ρ0)RT for control volumes Vi, i = 1, 2,

F3 = 0 for control volume V3.
(2)

We note that the forces F1 and F2, for the opening and closing phases of
the model respectively, are equal in magnitude but opposite in sign to bring the
system to its initial position after the completion of the closing phase. R is a gas
constant and T is the temperature taken here as 20◦C (293.15 Kelvin).
From Eq. (2), the size of the control volume V1 defines the magnitude of the

external force, which in turns determines the amplitude of the glottal pulse.
In order to determine the size of the control volume V1 for the specific am-

plitude, we develop a relation between them as follows.
From Eq. (1), we have

F1 = (ρ1 − ρ0)RT = ρ1RT − ρ0RT =
M1

V1
RT − ρ0RT, for i = 1, (3)

but from the spring-mass system, the force can be represented as

F1 =
K(Xmax −X0)

2
, (4)
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where K is a spring constant, X0 and Xmax represent extreme positions of the
spring-mass system so that (Xmax −X0) defines its amplitude. A comparison of
Eqs. (3) and (4) leads to the following required relation.

V1 =
2M1RT

(K(Xmax −X0) + 2ρ0RT )
. (5)

2.3. Mathematical formulation

We now present the mathematical model of the spring-mass system in each of
the three phases of our glottal model. The spring-mass equation for the opening
phase may be written as

M1Ẍ(t) + CẊ(t) +K(X(t)−X0) = F1, (6)

where M1, C, F1 and K are as described earlier, X0 is the initial state of the
opening phase andX(t) is the displacement of the mass of the spring-mass system
at time t. The initial condition for this phase may be taken to be

X(0) = X0 = 0 and Ẋ(0) = 0. (7)

Since the first phase is completed at t = T1, Eq. (6) is to be integrated subject
to the above initial conditions given in Eq. (7) in the time interval (0, T1]. As
t = T1 also marks the onset of the second phase of the glottal model, the condition
of the system at t = T1 determines the initial conditions of the second phase.
The initial value problem for the second phase may, thus, be expressed as

M2Ẍ(t) + CẊ(t) +K(X(t)−X0) = F2, ∀ T1 < t ≤ T1 + T2, (8)

where X0 = X(T1). The initial conditions for this phase are

Ẋ(T1) = 0 and X(T1) = X0. (9)

Since in the closed phase of the glottal model, there is no oscillation and the
system is at rest with the half time period T3, the state of the system in this
phase may be represented by

M3Ẍ(t) + CẊ(t) +K(X(t)−X0) = F3, (10)

such that

X(t) = 0, T1 + T2 ≤ t ≤ T1 + T2 + T3. (11)

Equations (6), (8) and (10) show that our proposed glottal model is a system
of three, second order ODEs, where each ODE is related to the opening, closing
and closed phases of the model having specific time periods, respectively.
The exact solution of the system has been given in Appendix.
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3. Numerical solution

Our parametric model consists of three ODE’s (6), (8) and (10) subjected to
the initial conditions (7), (9) and (11) representing the three phases of glottal
oscillation namely the opening, closing and closed phases, respectively. The so-
lution of the above system may be found analytically as well as numerically. The
analytical solution has been presented in Appendix. The complicated expression
of the analytical solution may make this solution computationally inefficient and
practically not suitable for real-time applications.
The numerical solution of the present model may be obtained by using a nu-

merical integrator like the Euler method, Runge-Kutta method of order 4, etc.
The Euler method is computationally the most efficient one but has the draw-
backs of being less accurate and conditionally stable. On the other hand, the
Runge-Kutta method of order 4 is much more accurate, unconditionally stable
and easy to implement.
In the present work, we have computed the numerical solution of our model

using the Euler method as well as the Runge-Kutta method of order 4 to estab-
lish the accuracy and efficiency of the numerical solution. Relevant results with
discussion are presented in the next section.

4. Results and discussion

In the previous sections we have described our four-parametric glottal model
and the procedure for finding its numerical solution. In this section, we describe
the working of our model, its characteristics, efficiency and its application in
speech production. The working of the model and its characteristics are described
by specifying various constants involved in the model and by investigating the
effect of four parameters, namely, the masses of three control volumes and the
size of the first one, on the shape of the glottal pulse generated by our model.
We will see that the mass of each control volume determines the shape of the
pulse in its respective phase, while the size of the first control volume determines
its amplitude. We also demonstrate the validity of our model by comparing its
glottal pulse with those of three literature models (Rosenberg, 1971; Fant
et al., 1985; Drioli, 2002), the accuracy with the help of a real source and
the efficiency by two literature models (Veldhuis, 1998; Fant et al., 1985).
A demonstration of the effects of variation in masses and the size of the first
control volume on the accuracy of the numerical solution is also presented. For
the application of our model we first extract the original glottal signal from vowel
/a/ of a male speaker by using the Inverse Filter technique and fit our model
pulse on it. This shows how well a real source may be approximated by our model
pulse. Then we use our model pulse as a source in the VOX software (Kob, 2004)
to synthesize the vowel /a/ of the word /had/.
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For the working of the present model, we need to specify the following con-
stants, C = 1× 10−7, ρ0 = 0.001293, R = 0.28705, K = 0.1, T = 293.15 Kelvin
(20◦C), where C is damping constant, ρ0 (gm/cm3) is the density of air at nor-
mal temperature 20◦C, R is the gas constant, K is the spring constant and T is
the temperature.
The four parameters of our model which control the shape of the pulse are

the massesM1,M2 andM3 of the control volumes respectively and the size of V1.
Various choices of the values of these parameters to be used in the present work
are given in Table 1 and will be referred to as these are used. The time periods
and forces may be determined from Eqs. (1) and (2), respectively. Equation (1)
shows that the time period of a phase of the glottal model depends on the mass
of the corresponding control volume. The greater the mass, the larger will be the
time period. From Eq. (2), we note that the force exerted by a control volume
on the spring-mass system is determined by its density. Therefore, by keeping
the mass of a control volume constant and changing its size, we can adjust the
corresponding force on the system.

Table 1. Various choices of volume sizes and masses of control volumes
used in the numerical simulation.

Control volumes [cm3] Masses [gram]

V1 M1 M2 M3

R1 2.8 0.028 0.01 0.0065

R2 2.8 0.1005 0.047 0.0823

Figure 2 shows the glottal pulse generated by the present model with the
pitch period 70 for the sizes and masses of control volumes given in row R1 of

Fig. 2. Single glottal pulse shape, generated from the control volume based glottal model.
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Table 1. We note from the figure that the time period of the opening phase is
larger than that of the closing phase. In view of Eq. (1), this is due to the larger
mass of the first control volume(M1). Hence we may design pulses of different
shapes and pitches by changing the masses of the control volumes. Figure 3a
shows pulses generated by our model for various values of M1 and Fig. 3b shows
those generated for different values of M2. The values of M1 and M2 used for
these pulses are given in Table 2, while all the other parameters of the model are
specified according to row R1 of Table 1.
We can observe from these figures the effects of variations in these masses on

the time periods of the opening and closing phases, which then determine the
shape and pitch of the pulses. We note that in Fig. 3a, the time period of the
opening phase changes with time delay of the constant time period of the closing
phase while, in Fig. 3b the time period of the closing phase changes without any
time delay of the opening phase.

a) b) c)

Fig. 3. a) Shape variation of the glottal pulse against variation in the mass of the first
control volume; b) shape variation of the glottal pulse against variation in the mass of
the second control volume; c) amplitude variation of the glottal pulse against variation

in the size of the first control volume.

We now describe how the amplitude of the pulse generated by our model
can be varied. We know that the amplitude of a spring-mass system depends on
the force exerted on the system, which, in turn, depends on the density of the
first control volume in view of Eq. (2). This implies that for a specified mass of
the first control volume, we can change the amplitude of the pulse by changing
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the size of the control volume. Figure 3c shows the variation in the amplitude
of the glottal pulse when the size of the first control volume is changed. The
pulses shown in this Fig. correspond to the values of V1 given in Table 2, all the
other parameters being chosen according to R1 of Table 1. However, for a specific
amplitude of the glottal pulse, Eq. (5) gives the corresponding size of the control
volume V1.

Table 2. Variation of masses contained in the first and second
control volumes and that of the size of the first control volume

for generating pulses of various shapes.

M1 [gram] M2 [gram] V1 [cm3]

0.0280 0.0100 3.00

0.0258 0.0123 2.87

0.0235 0.0145 2.75

0.0212 0.0168 2.62

0.0190 0.0190 2.50

0.0168 0.0212 2.37

0.0145 0.0235 2.25

0.0123 0.0258 2.12

0.0100 0.0280 2.00

We now establish the validity, accuracy and efficiency of our model by var-
ious criteria. The validity is proven by comparing the pulse generated by the
present model with those of three well-known models, two of which are para-
metric and one is a physical one. The parametric models are the Rosenberg and
LF (Rosenberg, 1971; Fant et al., 1985), while the physical model is a mu-
cosal wave propagation model (Drioli, 2002). Computational efficiency has been
shown by comparing the CPU time taken in computing the present numerical so-
lution, the present analytical solution and the solutions of two literature models
Rosenberg++ and LF (Veldhuis, 1998; Fant et al., 1985). The accuracy of the
present model has been established by investigating how well it approximates
a real voice source.
Figure 4 shows the pulses generated by the present model, the Rosenberg

model, the LF model and the mucosal wave propagation model. These pulses have
the same pitch period of 158 and are scaled to the same amplitude. Parametric
values used for generating our pulse are given in R2 of Table 1. The glottal pulse
of the Rosenberg model corresponds to closure time 0.6 and the positive/negative
slope ratio of 0.5, while that of the LF model has been generated by taking the
open phase parameter equal to 0.5, the positive/negative slope ratio parameter
equal to 0.12 and the closure time constant/closed phase parameter equal to 0.2.
For mucosal wave propagation model, the parameters and their values employed
for the generation of its pulse are given in Table 6.
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Fig. 4. Comparison among the control volume based glottal pulse, the Rosenberg glottal pulse,
the LF glottal pulse and the mucosal wave propagation pulse.

We note from the figure that no two pulses match with each other over the
whole time period. Therefore, this comparison may not be used for establishing
the accuracy of the present pulse. The thing that matter is whether a glottal
pulse represents opening, closing and closed phases or not. The present pulse
represents these phases successfully. Moreover, the opening phase of our glottal
pulse excellently matches with the opening phase of the Rosenberg glottal pulse,
while the closing phase of our pulse rests between the closing phases of the
Rosenberg and LF pulses.
Now we compare the computational efficiency of numerical and analytical so-

lutions of our proposed model with the Rosenberg++ model and the LF model
(Veldhuis, 1998; Fant et al., 1985). Table 3 gives elapsed time taken by a P-IV
computer (2.8 GHz processor, 512 MB ram and Visual C++ 6.0 computer lan-
guage) in generating the pulses of our model based on the Euler method, the 4th
order Runge-Kutta method and the analytical solution. This table also exhibits

Table 3. Elapsed Time taken by solutions of the proposed model based on numerical and
analytical approaches in a pulse generation of pitch period 8 × 106 (time step = 0.001 and

spring constant = 0.01).

Methods Time [second] Normalized Time

Euler numerical method (present model) 0.2626 1

4th order Runge-Kutta method (present model) 0.7412 2.8

Analytical solution (present model) 1.6559 6.3

Rosenberg++ model 1.7702 6.7

LF model 3.5340 13.5
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the computational time taken by other parametric models such as the Rosen-
berg++ and LF ones. The second column of the table shows actual elapsed time,
while the third column gives the normalized elapsed time, where normalization
has been performed by the elapsed time of the Euler method. We set a long pitch
period equal to 8×106 for each case to engage CPU for a long time. We note that
the Euler method is about three times more efficient than the 4th order Runge-
Kutta method and more than six times more efficient than the analytical solution.
The Euler method is usually less accurate than the 4th order Runge-Kutta

method and is conditionally stable. However, it is the most efficient numerical
method and makes a good choice when the efficiency is of great concern. The
Runge-Kutta method of order four is more than two times more efficient than the
analytical solution. The efficiency of the analytical solution of the present model
is nearly equal to that of the Rosenberg++ model and is about 2.14 times more
efficient than that of the LF model. This establishes the fact that the numerical
solution of the present model is more efficient than its analytical solution as
well as that of the well known Rosenberg++ and LF models. Therefore, it offers
a good choice for its use as a voice source in real-time speech production.
Table 4 shows the maximum absolute error in the numerical solutions com-

puted by the Euler and the Runge-Kutta methods for various values of the model
parameters M1, M2 and V1. Obviously, the Runge-Kutta method is more accu-
rate than the Euler method with a minimum factor of 31.21. The table also
demonstrates the effects of changes in the model parameters on our numerical
solution. It has been examined that the accuracy improves by increasing the size
of first control volume and may decrease insignificantly with increase in the mass
of any of the control volumes.

Table 4. Maximum absolute error of the numerical solutions by taken the variation of the
model parameters (time step = 0.001 and a spring constant = 0.01).

Parameters Maximum absolute error

M1 [gram] M2 [gram] M3 [gram] V1 [cm3] Euler Method Runge-Kutta Method

0.028 0.01 0.0065 2.8 0.00287 0.000055

0.019 0.01 0.0065 2.8 0.00195 0.000045

0.01 0.01 0.0065 2.8 0.00103 0.000033

0.028 0.019 0.0065 2.8 0.00208 0.000055

0.028 0.028 0.0065 2.8 0.00172 0.000055

0.028 0.01 0.0065 3 0.00267 0.000051

0.028 0.01 0.0065 2.5 0.00322 0.000061

0.028 0.01 0.0065 2 0.00402 0.000077

Now we investigate how well our model can approximate a real voice source.
For this we recorded the vowel /a/ from a male speaker and the glottal flow
obtained by the inverse filtering of voiced speech. The original glottal pulses
and those generated by our model, for an appropriate choice of the sizes and
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masses of the control volumes, are shown in Fig. 5 for five pitch periods. The
chosen values of the parameters are given in the second column of Table 5. The
comparison is excellent. The global relative error in a single pulse of the present
model is about 2%.

Fig. 5. Comparison of the control volume based glottal flow with inverse filtered glottal flow of
a male speaker for vowel /a/.

Table 5. Parametric values for the present model used in the numerical simulation.

Parameters Values Units

M1 0.00497 gram

M2 0.00157 gram

M3 0.00016 gram

V1 0.1 cm3

K 3000 gram-force/cm

Fs 22000 Hz

Table 6. Parametric values for the surface wave propagation vocal fold model.

Parameters Values Units

m 0.00017 kg

r 0.023 N·s·m−1

L 0.014 m

ρ 1.15 Kg·m−3

k 34 N·m−1

Pl 3000 Pa (Pascal)

T 0.18 mm

x0 0.05 mm

Sm 1.4 ×10−5 m2

Fs 11000 Hz
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We performed another experiment with our model in connection with VOX
software (Kob, 2004). The VOX software is based on physical modeling of hu-
man voice. For synthesis, it uses a multi-mass vocal fold model along with wave
propagation through the vocal tract. It provides graphic environment for input
and output of simulation data of the human vocal tract and vocal fold. We used
our proposed glottal model as a source in VOX software, keeping the vocal tract
set in a configuration for vowel /a/ of the word /had/, to synthesize the waveform
of the vowel /a/. The simulation of the VOX software generated the waveform
of the vowel /a/ in the word /had/ as shown in the Fig. 6.

Fig. 6. Waveform of vowel /a/ of the word /had/ with proposed glottal model as a voice source
in VOX software.

5. Conclusions

We have introduced a control volume based glottal model comprising three
control volumes and one-mass and two-springs system. It has been derived from
the idea that the flow of air through the glottis during the opening, closing and
closed phases of vocal folds defines three basic control volumes, which have spe-
cific masses and sizes. These control volumes connected in series produce the
shape of the glottal pulse when they interact with a spring-mass system. This
model may be viewed as a parametric model and is controlled by four param-
eters. We have found that the shape of the glottal pulse is determined by the
masses in these control volumes, while the amplitude varies by varying the size of
the first control volume. The glottal pulse generated by the present model, when
compared with those generated by the Rosenberg, LF and mucosal wave propa-
gation models, demonstrates that it appropriately represents the opening, closing
and closed phases of the vocal fold oscillation. Furthermore, a real voice source
obtained by the inverse filtering technique is well approximated by our model in-
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dicating that it may be employed as a voice source. The present model, although
parametric in nature, is governed by differential equations rather than analytical
functions enabling us to find its solution analytically and/or numerically. In the
present case, the numerical solution has been found to be more efficient than
the analytical solution and the other parametric models Rosenberg++ and LF.
It has been found that the Euler method of integration is about three times more
efficient than the 4th order Runge-Kutta method, more than six times more ef-
ficient than the analytical solution and the Rosenberg++ model, and more than
thirteen times more efficient than the LF model. The Rung-Kutta method of
order four is more than two times more efficient than the analytical solution and
the Rosenberg++ model, and about five times more efficient than the LF model.
As far as the accuracy of the numerical solution is concerned, the Runge-Kutta
method gives very accurate results and the accuracy improves by increasing the
size of the first volume and may decrease insignificantly with increase in the mass
of any of the control volumes. We conclude that the present model renders itself
as an efficient, accurate and realistic voice source in real-time speech synthesis.
Glottal flow represented by the three control volumes with constant densities

gives an opportunity to investigate the response of the vocal tract on these control
volume for generating speech. We believe that the control volume based glottal
model proposed in the present work may serve as a useful source model in speech
synthesizers and will provide a new dimension for further investigations.

Appendix. Exact solution of the proposed model

G(t) =





−F1

µ1

√
M1K

e

(
−Bt
2M1

)

cos

(
µ1t− tan−1

(
B

2µ1M1

))
+

F1

K
,

where µ1 =

√
4M1K −B2

2M1
> 0, for 0 ≤ t ≤ T1,

F1

µ2

√
M2K

e

(
−B(t−T1)

2M2

)

cos

(
µ2 (t− T1)− tan−1

(
B

2µ2M2

))
+

F1

K
,

where µ2 =

√
4M2K −B2

2M2
> 0, for T1 < t ≤ T1 + T2,

0, for T1 + T2 < t ≤ T1 + T2 + T3.
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