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This paper presents exploratory problems of regularisation of the inverse method for the
investigation of the characteristics of acoustic sources at industrial conditions. The solution
of problem is to find an effective method for the determination of optimal regularisation pa-
rameters in acoustic inverse problems. The sound power of the sound source distribution can
be simply deduced from the measured pressure field and the inversion of the corresponding
matrix of frequency response functions. The accuracy of reconstruction of the sound power of
the source is crucially dependent on the conditioning of thematrix to be inverted. The success
of regularisation depends on the appropriate choice of the regularisation parameter.
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1. Introduction

Application of numerical methods for the estimation of the sound level distribution
around industrial objects is based on the determination of the acoustic power of each
noise source by means of acoustic pressure measurements – according to the relevant
procedures – and estimating its emission level in the measuring point outsidea factory.
Software based on the noise propagation models in an open space is usually applied. An-
other approach for solving such problems, utilising inversion methods, isalso possible.
One of the problems formulated in inversion methods is the reconstruction of differ-
ential operator of a known structure, in which unknown coefficients aredetermined on
the basis of information on certain functionals estimated within the solution range. By
modelling the process of radiation of vibroacoustic energy from the source to the re-
ceiver and knowing the acoustic pressure distribution in measuring pointsas well as the
distribution of noise sources in the factory we can reverse the propagation path model
and estimate acoustic parameters of the sound source [2]. Thus, if the reverse problem
is described by a matrix notation its solution should be looked for by means ofinversing
the matrix describing the behaviour of the object. Inversion methods can be applied for
the identification of vibroacoustic energy sources, for the estimation of sound radiation
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inversion by vibrating surfaces as well as for the acoustic estimation of machines on the
basis of the analysis of the sound field parameters.

2. Inversion methods in vibroacoustics

A sound pressure value in the observation pointpj results from the applied calcula-
tion model [1, 2]:

p2
j = G(i, j) · Ni , (1)

whereNi – sound power of the source noi; G(i, j) – value of the transfer function
between the sound power of thei-th source and the sound pressure value in thej-th
point.

Equation (1) will be written in the matrix notation:

p̂ = G · N. (2)

If we take into consideration, that the emission pressure of the source and the back-
ground noise are measured in the measuring point, Eq. (2) becomes:

p̂ = G · N + e, (2′)

wheree = p̂ − p – error vector, difference between the pressure estimated from the
noise propagation model and its value measured in the observation point.

There are two sources of the error vectore: the first – all disturbances occurring
in the measuring point and influencing the measured value of the sound pressure, the
second – errors resulting from noise distribution modelling on the site undertesting. The
solution is based on the assumption that we know the positions ofM noise sources in
the factory and that we measure the sound pressure in the finite number of observation
pointsO. In order to limit the error vector we optimise parameters of individual sources
in the model. The following methods are applied: the shortest distance, the least square,
or the singular value decomposition (SVD). Often applied criterion is the minimisation
of the expression:

K = eHe. (3)

One of the analytical tools is the matrix distribution versus the singular value de-
composition (SVD). Usefulness of such decomposition is due to the fact that that the
matrix of transfer functionG can be expressed in the following form:

G = UΣVH , (4)

whereU, V – orthogonal matrices of the following properties:UHU = UUH = I and
VHV = VVH = I , Σ – diagonal matrixm × n, in which successive singular values
satisfy the conditionσ1 ≥ σ2 ≥ ... ≥ σmin(o,m) ≥ 0, superscriptH denotes the
complex conjugate transposed.

The vector of estimated complex parameters value of the model source can be esti-
mated from the dependency:

N = G+p, (5)

where matrixG+ = [GHG]−1GH is “pseudo-inversion” of matrixG.
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We can estimate matrixG+ using theSVD distribution:

G+ = VΣ+UH , (6)

whereΣ+ – matrix of pseudo-inversion of matrixΣ, diagonal matrix with elements
(1/σ1, 1/σ2, ... 1/σM ).

Thus, the noise source powerN :

N = VΣ+UH p̂. (7)

The value of the expression for the square matrix is the accuracy measure of the per-
formed simulations:

κ(G) = ‖G‖‖G−1‖ (8)

since‖G‖ = σmax and‖G−1‖ = 1/σmin then

κ(G) =
σmax

σmin
. (8′)

By means of this value we can estimate an errorδn committed at the determination
of the model parameters: ∥∥∥∥

δn

n

∥∥∥∥ ≤ κ(G)

∥∥∥∥
δp

p

∥∥∥∥ . (9)

For the matrix, which is not a square one, the condition numberκ(G) is expressed by:

κ(G) = ‖G‖‖G+‖, (10)

where‖G+‖ = 1/σm, σm – the smallest non-zeroG value, thus:

κ(G) =
σmax

σm
. (11)

Such inversion task is not correctly formulated – in a classical sense – since small
changes of investigated functionals can correspond to large changes of solutions. If we
superimpose additional restrictions on the allowed set of solutions we can obtain solu-
tions stable in respect of data changes, it means tasks conditionally-correct. Thus, ap-
plying various regularisation methods we can consider the approximate solutions based
on the approximate data.

3. Selected regularisation methods

Let us consider the possibility of application of the selected regularisation methods
for limiting the error vectore. Ill-conditioned equation sets, which require regularisation
before their solution, occur often during the numerical calculations. Regularisation must
eliminate unreliable solutions dominated by noises and errors during the measurements
of sound field parameters. The method of the optimal value selection of theregularisa-
tion parameter, allowing to obtain maximum information from available data, is one of
the most useful in such cases.
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We may look for the minimum value of the expression:

J = eHe + βNHN, (12)

whereβ – regularisation parameter.
The Tichonov’s method is one of the most often used regularisation technique. The

solution is of an adequately residual norm and after meeting additional restrictions it will
be not further than the expected unknown solution. The combination of a residual norm
square and the additional restriction defined as the weighted value can be ameasure of
difference between the measured data and identified values.

The following expression is the error criterion [3]:

J = ‖GN − p̂‖2 + β‖LN‖2, (13)

whereβ – regularisation parameter,L – identity matrix.
Tichonov’s regularisation method does not provide an accurate solution. Regularisa-

tion parameterβ is the only introduced value at the defining the regularisation matrixL .
In this case matrixL reflects a range of weights of unknown boundary values. When
β = 0 we will obtain the solution consistent with the least square method but unstable
when without the regularisation. On the other hand the large value ofβ favours solutions
of small dimensions. Thus, parameterβ controls the degree at which the regularised so-
lution will be more fitted to the obtained results or to the solution range.

When we select the continuous parameterβ at the Tichonov’s regularisation, this
regularisation becomes not objective. The proper selection of the regularisation param-
eter allows obtaining the highest possible accuracy of the solution, which however, is
unknown to us. Parameter determination methods should not require too much informa-
tion on error distribution at the sound pressure measurements. Effectiveness of the Ti-
chonov’s regularisation method depends on the proper selection of parameterβ, which
causes deviation between disturbance errors and the regularisation ones. Obviously, we
are dealing here with two contradicting requirements. Large value of the regulation pa-
rameterβ is preferred in the case of a numerical problem, however, for an increased
estimation accuracy the applied parameterβ should be as small as possible.

Another method of the regularisation parameter determination is the graphical meth-
od, called CurveL method. It is based on plotting – in a logarithmic scale – the reg-
ularised parameter values versus the minimum error. Norm‖LN‖ of the regularised
solution is plotted versus the residual norm‖Gp − β‖ for all possible regularisation
parameters. The curve – of the shape similar to the letterL (for logarithmic plots) – is
plotted for the regularised parameterβ range (Fig. 1).

Thus, the optimal regularisation parameter value markedβLCV corresponds to coor-
dinates of the curve L corner. The horizontal part of the curve characterises too smooth
solutions (over-regularised), while the perpendicular part shows solutions dominated by
errors (under-regularised). The solutions found in-between these extremes represent the
required compromise. Optimal value of the regularising parameter occurs in the corner
of L curve. By selecting the properβ value we can control the filtration degree of the
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Fig. 1. CurveL [3].

solution. Searching for the optimal deviation between the disturbances error and regu-
larisation error is the base of the Generalised Cross Validation Method – (GCV). The
value ofβGCV is needed here for a minimisation of the generalised cross validation
function determined as [3]:

GCV(β) =

(
1

m

)
‖I − B(β)p̂‖2

[(
1

m

)
Tr{−B(β)}

]2 , (14)

wherem – number of measuring points,Tr – matrix trace (sum of orthogonal ele-
ments);B(β) – influence of the matrix defined by:

B(β) = G
(
GHG + βI

)−1
GH . (15)

Error of disturbances caused by the regularisation of the error criterion J with addi-
tion of β is being estimated by the expression occurring in a denominator (14). Square
sum of the residue of the regularised solution is presented in a numerator.Since a nu-
merator is less than unity it increases theGCV(β) value, if parameterβ is increased.
Thus, the GCV function estimates both errors in solution and the inaccuracyexpressed
by matrixG will be inverted by being included into the selected regularisation parame-
ter. Figure 2 presents an example of theGCV function and the regularisation parameter
βGCV leading toGCV. The method provides right results when disturbances are sim-
ilar to a white noise, it means when they are independent and of an identicalvariance.
TheGCV method allows determination of optimal estimates on the basis of measure-
ment results only, however it requires huge number of calculations, which makes it quite
impractical.
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Fig. 2. Function GCV course [3].

4. Results of an experiment

59 measurements of the sound pressure on the hemisphere surface,which was sur-
rounding the machine placed on a sound reflecting surface – were performed in the
experiment. The actual machine was modelled by 4 monopole noise sources arranged
in space. A sound power of the machine was determined with taking into consideration
mutual configuration of substitute sources and observation points as wellas the Green’s
function for substitute sources. Elements of matrixG for omni-directional sources are
given by the following dependency [2]:

Gmo =
Exp(−ikrmo)

rmo
, (16)

wherermo – distance between them-th source and theo-th observation point;k – wave
number.

The plot showing the accuracy of determining the parameters of the model (using
formula (8′)) as well as the characteristics of machine radiation is shown in Fig. 3.

Fig. 3. Accuracy coefficient of a sound power determination and the radiation characteristics [2].

Figure 4 presents the results of fitting sound power of 4 noise sources for the reg-
ularisation parameterβ while using criterion (13) for the selected frequency for two
different machines. The results are confirmed our previous studies [2] the accuracy of
estimation the parameters of substitute sources.
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Fig. 4. Example of the sound power estimation while using regularisation formula (13) for two different
machines.

5. Conclusions

Inversion methods can be applied in investigations of vibroacoustic processes due to
the advancements in the calculation possibilities and process modelling as wellas due
to the development of effective methods of obtaining and processing large amounts of
data. Inversion tasks are usually not correctly formulated – in a classical sense. As a con-
sequence small changes in investigated functionals can correspond to large changes in
solutions. In cases of an ill-conditioned problem the regularisation methodsare applied
for its solution. Inverse determination of sound power levels of individual machines – on
the basis of sound pressure measurements in the observation points – is very sensitive
to disturbances in receiving points.
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