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This paper presents some elementary formulations for the mutual modal radiation effi-
ciency of a simply supported rectangular plate embedded into a rigid infinite baffle. The mag-
nitude makes it possible to introduce the intermodal plate’s interactions into the total radi-
ation efficiency of the plate vibrating under the influence ofan external surface force. The
approximate formula has been expressed as a combinations ofsome trigonometric and special
functions. The formula is convenient for some numerical computations of the modal and total
radiation efficiency values of the plate.
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1. Introduction

The problem of modal radiation resistance of a rectangular plate was reported in the
literature earlier. So far, some integral formulations for radiation self-resistance as well
as for their low-frequency and high-frequency approximations werepresented [1–5].
However, approximations presented by DAVIES [2] are useful only. The author ex-
pressed only a part of the corresponding integrand as its expansion series and left all
the functions oscillating with a change in frequency unchanged. As a result he obtained
much higher accuracy than the others – formulas weakly dependent onthe modal num-
bers. Nonetheless, he included the zero expansion term, only, and his formulas show
a big level of approximation error. Therefore, the formulas are useful for some rough
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numerical computations only. Paper [6] presents an approximation forthe radiation self-
resistance of a rectangular plate similar to that presented by Davies but including some
more expansion terms. As a consequence, the frequency range, where the approximation
is valid, became wider and the approximation error became much smaller.

For some computations of such vibroacoustic magnitudes as radiated sound power
and acoustic radiation impedance it is necessary to know the modal radiation impedance
as well as the intermodal mutual radiation impedance. So far, there wereno approxima-
tion intermodal mutual radiation resistance formulas of a rectangular platepresented in
the literature. Therefore, presenting such formulas is the main aim of this paper.

2. Fourier representation

A flat harmonically vibrating simply supported rectangular plate has been embedded
into a flat rigid infinite baffle. Internal friction has been neglected. It hasbeen assumed
that transverse deflections of the plate are small as compared with the plateedge lengths
a andb. A linear model of plate by Kirchhoff–Love has been used. The plate mode shape
of modemn is [7]

Wmn(x, y) = 2 sinmπ
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wherex, y – Cartesian coordinates of the plate point,0x axis is parallel to the plate edges
of lengtha and 0y axis is parallel to the plate edges of lengthb, m, n = 1, 2, 3, . . . –
modal numbers. Solution (1) satisfies the equation of motion of the plate(k−4

mn∇4 − 1)
Wmn(x, y) = 0, where∇2 = ∂2/∂x2 + ∂2/∂y2, k2

mn = π2[(m/a)2 + (n/b)2] –
structural wavenumber of the plate raised to its second power. The integral for the time-
averaged intermodal sound radiation power of modesmn andpq can be formulated
as [8]

Πmn,pq =
1

2

∫

S

pmn v∗pq dS, (2)

whereS – surface enclosing the plate,pmn – modal amplitude of radiated acoustic
sound pressure exerted by the plate via its modemn on surfaceS, v∗pq – conjugate
value for vibration velocity of acoustic particlevpq = −iωpqWpq related to modepq

and normal to surfaceS given that the time dependence ise−iωt, ωpq = k2
pq

√
DE/ρh –

eigenfrequency,DE = Eh3/[12(1 − ν2)] – bending stiffness,ν – Poisson ratio,ρ, h –
the plate density and thickness, respectively. It is possible to express themodal sound
pressure amplitude as

pmn(x, y) = iρ0kc

∫

S0

vmn(x0, y0) G(x, y, 0 |x0, y0, 0) dx0 dy0, (3)
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where Green’s function in its Fourier representation for the Neumann boundary value
problem for the Helmholtz equation for half-spacez ≥ 0 has been formulated as

G(x, y, z |x0, y0, 0) =
i

4π2

+∞∫

−∞

+∞∫

−∞

exp
{
i[ξ(x−x0)+η(y−y0)+ζz]

}dξ dη

ζ
, (4)

whereζ2 = k2 − ξ2 − η2. In the case of impedance approach, surfaceS is extended
closely to plate’s surface, i.e. forz = 0. Inserting Green’s function (4) into Eq. (3)
makes it possible to formulate the modal sound pressure amplitude as

pmn(x, y) = − iρ0k
2cωmn

4π2

×
2π∫

0

π/2−i∞∫

0

Umn(ϑ, ϕ) exp
[
ik sin ϑ(x cos ϕ + y sin ϕ)

]
sinϑdϑ dϕ, (5)

where the following transformations have been appliedξ = k sinϑ cos ϕ, η = k sinϑ
sin ϕ, ζ = k cos ϑ, dξ dη = k2 sin ϑ cos ϑ dϑ dϕ, ϑ = ϑ′ + iϑ′′ ∈ C, 0 ≤ ϕ ≤ 2π and
the following denotations have been used:ρ0 – rest density of the surrounding medium,
c – sound velocity,k = 2π/λ – acoustic wavenumber, and

Umn(ϑ, ϕ) =

∫

S0

Wmn(x0, y0) exp
[
− ik sin ϑ(x0 cos ϕ + y0 sin ϕ)

]
dx0 dy0

=
2ab

π2mn

exp(iα/2) − (−1)m exp(−iα/2)

1 − (α/mπ)2

×exp(iβ/2) − (−1)n exp(−iβ/2)

1 − (β/nπ)2
, (6)

α = ka sin ϑ cos ϕ, β = kb sin ϑ sin ϕ. The intermodal radiation sound power can be
expressed in its Fourier representation for modenumber pairsmp andnq (each pair must
contains modenumbers of the same parity)

Πmn,pq =
ρ0k

2cωmnωpq

8π2

2π∫

0

π/2−i∞∫

0

Umn(ϑ, ϕ) U∗
pq(ϑ, ϕ) sinϑ dϑ dϕ. (7)

The intermodal reference radiation sound power can be defined asΠ
(∞)
mn,pq =

√
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·
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Π
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∫
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mnW 2
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time harmonic processes. Therefore,Π
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(ab/2) ρ0cω
2
mn and finallyΠ

(∞)
mn,pq = (ab/2)ρ0cωmnωpq. Using Eqs. (6) and (7) makes

it possible to express the normalized intermodal radiation impedance of mode pairmn
andpq in its Fourier representation as

ζmn,pq ≡ Πmn,pq

Π
(∞)
mn,pq

=
4k2ab

π6mnpq

2π∫

0

π/2−i∞∫

0

1 − (−1)m cos α

[1 − (α/πm)2][1 − (β/πn)2]

× 1 − (−1)n cos β

[1 − (α/πp)2][1 − (β/πq)2]
sin ϑ dϑ dϕ, (8)

where the pairsmp andnq must contain modenumbers of the same parity as in Eq. (7).
For all the other modenumber combinationsζmn,pq = 0. Equation (8) represents a
complex magnitude which integrated alongϑ variable within its limits of(0, π/2)
gives the normalized intermodal radiation resistance and integrated within the limits
of (π/2, π/2 − i∞) gives the normalized intermodal radiation reactance.

3. Low frequency approximation

It is necessary to compute the approximate value of integral from Eq. (8) applying
the method analogous as presented in [2] and [6]. For this purpose, thedenominators of
the corresponding integrands have been expressed as their expansion series expanded
around pointsαm ≡ α/mπ = 0, αp ≡ α/pπ = 0, βn ≡ β/nπ = 0, βq ≡ β/qπ = 0
giving

[
(1 − α2

m)(1 − α2
p)(1 − β2

n)(1 − β2
q )
]−1

≃ ε0 − ε1 + ε2 + O(α6
m + α6

p + β6
n + β6

q ), (9)

where functionO(·) denotes the approximation error order and

ε0 = 1, ε1 = α2
m + α2

p + β2
n + β2

q ,
(10)

ε2 = α2
mα2

p + α2
mβ2

n + α2
pβ

2
n + α2

mβ2
q + α2

pβ
2
q + β2

nβ2
q + α4

m + α4
p + β4

n + β4
q .

Further, the expansion series from Eq. (9) has been inserted into integral (8), and inte-
grated term by term giving the low frequency approximation for the radiation resistance
covering the three initial expansion terms

Re ζmn,pq =
4k2ab

π6mnpq

[
N−1∑

r=0

(−1)rIr + O(ε2N )

]
, (11)

whereε2N = (k/π)2N [a2N (m−2N + p−2N ) + b2N (n−2N + q−2N )], N ∈ {1, 2, 3}.
Assuming in Eq. (11) thatN = 1 results in formulas presented earlier by Davies for
m = p, n = q of the lowest numerical accuracy [2]. AssumingN = 2 orN = 3 results
in increasing the numerical accuracy. Moreover, formulas identical as presented in [6]
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have been obtained form = p, n = q. The elementary values of the integrals have been
computed in the same way as presented in [6] which gives

1

2π
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= 1 − (−1)msincka − (−1)nsinckb + (−1)m+nsincγ; (12a)
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whereγ2 = k2(a2+b2), sincu = sinu/u, csu = sincu−cos u, ε2 = (b2−a2)/(b2+a2).
Equations (11), (12) are the generalization of all the earlier presented formulas. They
are valid for computations of the modal radiation resistance as well as forcomputations
of the intermodal radiation resistance, and they assure the highest numerical accuracy
known so far. Moreover, assumingm = p andn = q results in the modal radiation
resistance formula known from [6] just from the intermodal radiation resistance from
Eq. (11).

4. Numerical analysis

All the numerical results have been prepared for a sample steel rectangular plate of
sizesa = 0.5 [m], b = 1.0 [m] andh = 1 [mm]. Certainly, the formulas presented can
be used for any simply supported rectangular plates given that they arethin as compared
with their remaining sizes.

The normalized intermodal radiation resistance has been presented in Fig. 1a for
some sample mode pairs. A good agreement of the low frequency approximation and
the integral formulation is shown for0 ≤ k/kmn,pq < 0.2 wherek2

mn,pq = k2
mn + k2

pq.
The theoretical approximation error value Err has been computed fromEq. (11) and it is
equal toε2N whereas the estimated approximation error value has been computed from

Err = |σInt − σApprox| , (13)
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Fig. 1. a) Radiation efficiencyζmn,pq. Key: (1) integral for modes (1,2) and (1,4); (2) integral for modes
(3,4) and (1,2); (3) integral for modes (3,3) and (7,7); (4) approximation for modes (1,2) and (1,4); (5) ap-
proximation for modes (3,4) and (1,2); (6) approximation for modes (3,3) and (7,7). b) Approximation
error Err. Key: (1) theory for modes (1,2) and (1,4); (2) theory for modes (3,4) and (1,2); (3) theory for
modes (3,3) and (7,7); (4) estimation for modes (1,2) and (1,4); (5) estimation for modes (3,4) and (1,2);

(6) estimation modes (3,3) and (7,7).

where valuesσInt andσApprox have been computed from Eqs. (8) and (11), respectively.
Figure 1b shows that the estimated error value does not considerably exceed the theo-
retical error value within the whole low frequency range. Moreover, theerror assumes
values smaller than10−2 for the relative frequenciesk/kmn,pq < 0.2 which confirms
that the formulas presented herein gives a good approximation for the intermodal radi-
ation resistance.

5. Concluding remarks

The low frequency formulas for the intermodal radiation resistance have been pre-
sented in the form useful for some numerical computations. The formulas gives consid-
erably higher numerical accuracy than those presented earlier by DAVIES in [2]. More-
over, they are the generalization of those formulas and the enhanced formulas presented
in [6] since they can be used for the modal radiation resistance as well asfor the inter-
modal radiation resistance.
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