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The construction of the Green functions for the Neumann boundary value problems of the
Helmholtz equation at the two-wall corner and the three-wall corner has been described. The
Green functions have been expressed in their Fourier representation and have been used for
computations of the radiation sound pressure of a flat circular source located in one of the
two rigid baffles of the two-wall corner and in one of the threerigid baffles of the three-wall
corner.
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1. Introduction

TheGreenfunctionrepresents elementaryacousticpressureexertedbya point source
located atr0 within a region ofΩ at a measuring point located atr within the same
region. This quantity is useful for further computations of the acoustic pressure radiated
by sources with a continuous normal vibration velocity distribution. The Green function
for the one-dimensional Neumann boundary value problem was presented in [1]. The
solution was valid only for the linear operator containing second order derivatives of
one or two independent variables only. On the other hand, the Fourier representations
for the Green function for a free field regionΩ bounded by a flat rigid infinite baffle
or bounded by a rigid infinite cylinder are well known and were applied to some vibro-
acoustic problems [2–6]. So far, no application of the Green function has been presented
in the literature for a two-wall corner and for a three-wall corner nor for describing
vibroacoustic processes generated by some sources with a continuousnormal vibration
velocity distribution. This paper proposes a construction of such a function that can be
applied to vibroacoustic problems.
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2. The Green function construction

2.1. Two-wall corner

The Helmholtz equation for the Neumann boundary value problem can be formu-
lated as below [2] at a two-wall corner of a regionΩ1 bounded by the two semi-infinite
baffles, described by equationsy = 0, z = 0

(∆ + k2)G(r | r0) = −δ(r − r0), (1)

wherer = (x, y, z) – Cartesian coordinates of the acoustic field point,r0 = (x0, y0, z0)
– Cartesian coordinates of the source point,G(r | r0) ≡ G(x, y, z |x0, y0, z0) ≡
G(x, y, z | r0) – Green function (solution for Eq. (1)),∆ = ∂2/∂x2 +∂2/∂y2 +∂2/∂z2

– Laplace operator,δ(r− r0) = δ(x− x0) δ(y − y0) δ(z − z0), k = ω/c0 > 0 – acous-
tic wavenumber,ω – circular frequency,c0 – sound velocity. It is necessary to find the
Green functionG(r | r0) for the region under considerationΩ1, i.e.−∞ < x < +∞,
0 ≤ y < +∞, 0 ≤ z < +∞ filled with light fluid. This quantity can be interpreted as
the sound pressure amplitudep(r) exerted at the pointr and generated by a source at the
point r0. The following homogeneous boundary conditions are satisfied at the baffles’
surfaces and can be formulated as

∂

∂y
G(r | r0)

∣∣∣
y=0

= 0,
∂

∂z
G(r | r0)

∣∣∣
z=0

= 0. (2)

The Green function considered herein is valid within the regionΩ1 where the operators
∂2/∂x2 and∂2/∂y2 possess the continuous spectrum within the limits−∞ < ξ <
+∞ and0 ≤ η < +∞, respectively. Let us formulate the Fourier transform pair (cf.,
Appendix A)

G(r | r0) =
1

π

+∞∫

ξ=−∞

+∞∫

η=0

g(ξ, η, z | r0) cos ηy exp(iξx) dξdη,

(3)

g(ξ, η, z | r0) =
1

π

+∞∫

x=−∞

+∞∫

y=0

G(r | r0) cos ηy exp(−iξx) dxdy.

We insert the Green function from Eq. (3) into Eq. (1). Further, we multiply the equa-
tion side by side by factor(1/π) cos η0y exp(−iξ0x) and integrate along variablesx, y
within their limits −∞ ≤ x < +∞ and 0 ≤ y < +∞, respectively. We use the
following Dirac delta function properties

1

π2

+∞∫

x=−∞

exp [i(ξ − ξ0)x]dx

+∞∫

y=0

cos ηy cos η0y dy = δ(ξ − ξ0) δ(η − η0),

(4)
+∞∫

ξ=−∞

+∞∫

η=0

f(ξ, η) δ(ξ − ξ0) δ(η − η0) dξdη = f(ξ0, η0)
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and obtain the following from Eq. (1)

( d2

dz2
+ γ2

)
g(ξ, η, z | r0) = − 1

π
exp(−iξx0) cos ηy0 δ(z − z0), (5)

by substitutingξ0 andη0 with ξ andη, respectively, whereγ2 = k2 − ξ2 − η2. In the
case whenz 6= z0, we obtain a homogeneous wave equation

( d2

dz2
+ γ2

)
g(ξ, η, z | r0) = 0, (6)

instead of Eq. (5) with the following solutions

g1(ξ, η, z | r0) = A1 exp(iγz) + B1 exp(−iγz) for z ≤ z0,
(7)

g2(ξ, η, z | r0) = A2 exp(iγz) + B2 exp(−iγz) for z0 ≤ z.

These solutions must satisfy “the sharpened Sommerfeld radiation condition” [7], i.e.
these solutions must describe the waves propagated along the axis0z for increasing
z values, which implies thatB2 = 0. The Neumann boundary condition leads to

d

dz
g1(ξ, η, z | r0)

∣∣∣
z=0

= 0 (8)

which results inA1 = B1. We use the fact that the Green function is continuous
for all the values ofz as well as forz=z0 which implies thatg1(ξ, η, z=z0 | r0) =
g2(ξ, η, z=z0 | r0) and

g1(ξ, η, z | r0) = A0 cos γz for z ≤ z0,
(9)

g2(ξ, η, z | r0) = A0 cos γz0 exp[iγ(z − z0)] for z0 ≤ z,

where it has been denoted thatA1 = A0/2 andA2 = A0 cos γz0 exp(−iγz0). Solu-
tions (9) must satisfy the non-homogeneous equation (5) which is singular for z = z0.
The solution derivatives over the variablez show a value jump forz = z0. Inserting
solutions (9) into Eq. (5) and integrating over the variablez within its limits z0 − ǫ <
z < z0 + ǫ covering a singular pointz = z0, and further computing the following limit
ǫ→0 lead to

lim
ǫ→0

d

dz
g2(ξ, η, z | r0)

∣∣∣
z=z0+ǫ

− lim
ǫ→0

d

dz
g1(ξ, η, z | r0)

∣∣∣
z=z0−ǫ

= −exp(−iξx0)

π
cos ηy0 lim

ǫ→0

z0+ǫ∫

z0−ǫ

δ(z − z0) dz,

and
lim
ǫ→0

A0 cos γz0 exp(−iγz0) (iγ) exp[iγ (z0 + ǫ)]

− lim
ǫ→0

A0 (−γ) sin γ (z0 − ǫ) = − 1

π
exp(−iξx0) cos ηy0,
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which implies thatA0 = (i/πγ) cos ηy0 exp(−iξx0) exp(iγz0). The Green function
from Eq. (3) has been expressed by the solutions (9) and assumes theform of

G(r | r0) =
i

π2

+∞∫

ξ=−∞

+∞∫

η=0

I(γ, z | z0) exp[iξ(x − x0)] cos ηy0 cos ηy
dξdη

γ
, (10)

where

I(γ, z | z0) =

{
cos γz exp(iγz0) for 0 ≤ z ≤ z0 < +∞
cos γz0 exp(iγz) for 0 ≤ z0 ≤ z < +∞

(11)
= cos γz exp(iγz0) H(z0 − z) + cos γz0 exp(iγz) H(z − z0)

and

H(z − z0) =





1, z > z0,

1/2, z = z0,

0, z < z0,

(12)

is the Heaviside function.
In the specific case when the field point as well as the source point are located on

the planez = 0, the Green function assumes the form of

G(x, y, 0 |x0, y0, 0) =
1

π2

+∞∫

ξ=−∞

+∞∫

η=0

exp[iξ(x − x0)] cos ηy0 cos ηy
dξdη

γ
(13)

valid within the regionΩ1 limited by the two-wall corner.

2.2. Three-wall corner

The Green function for the Helmholtz equation (1) satisfies the boundary condi-
tions expressed below within the region of the three-wall cornerΩ2 limited by the rigid
infinite bafflesx=0, y=0, z=0 of the Neumann boundary value problem

∂

∂x
G(r | r0)

∣∣∣
x=0

= 0,
∂

∂y
G(r | r0)

∣∣∣
y=0

= 0,
∂

∂z
G(r | r0)

∣∣∣
z=0

= 0. (14)

This function deals with the regionΩ2, i.e. 0 ≤ x < ∞, 0 ≤ y < ∞, 0 ≤ z < ∞.
In this case, the operator∂2/∂x2 is defined within the semi-infinite range0 ≤ x < ∞
with a continuous spectrum0 ≤ ξ < ∞. We must use the following Fourier transform
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pair (cf. Appendix A) instead of the transform pair from Eq. (3)

G(r | r0) =
2

π

+∞∫

ξ=0

+∞∫

η=0

g(ξ, η, z | r0) cos ξx cos ηy dξdη,

(15)

g(ξ, η, z | r0) =
2

π

+∞∫

ξ=0

+∞∫

η=0

G(r | r0) cos ξx cos ηy dxdy.

We apply the following Dirac delta function integral properties

4

π2

+∞∫

x=0

cos ξx cos ξ0xdx

+∞∫

y=0

cos ηy cos η0y dy = δ(ξ − ξ0) δ(η − η0),

(16)
+∞∫

ξ=0

+∞∫

η=0

f(ξ, η) δ(ξ − ξ0) δ(η − η0) dξdη = f(ξ0, η0)

and substitute the non-homogeneous wave equation (1) with
( d2

dz2
+ γ2

)
g(ξ, η, z | r0) = − 2

π
cos ξx0 cos ηy0 δ(z − z0). (17)

We rearrange the Green function to formulate it below in a similar way as in Eq. (11)
in the case of the two-wall corner

G(r | r0) =
4i

π2

+∞∫

ξ=0

+∞∫

η=0

I(γ, z | z0) cos ξx cos ξx0 cos ηy cos ηy0
dξdη

γ
, (18)

where functionI(·) has been defined in Eq. (11). In the case when the field point as well
as the source point are located on the planez = 0, the Green function assumes the form
of

G(x, y, 0 |x0, y0, 0) =
4i

π2

+∞∫

ξ=0

+∞∫

η=0

cos ξx cos ξx0 cos ηy cos ηy0
dξdη

γ
(19)

which deals with the region of the three-wall cornerΩ2.

3. Acoustic pressure

The Green function shown here represents an elementary acoustic pressure. It can
be used, e.g., for computations of the acoustic vibration velocity potentialamplitude

φ(r) =

∫

S0

vn(r0) G(r | r0) dS0, (20)
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whereS0 – surface of sound source, andvn – normal component of vibration velocity
of an acoustic particle being in direct contact with the surfaceS0. The acoustic pressure
depends on the acoustic potential as followsp(r) = ̺0 ∂φ(r)/∂t. The time dependence
has been assumed asexp(−iωt) which implies thatp(r) = −iω̺0φ(r), and leads to

p(r) = −iω̺0

∫

S0

vn(r0) G(r | r0) dS0, (21)

where̺0 – light fluid density in the rest state. Equation (21) represents acoustic pressure
exerted at the pointr by a source with a continuous surface harmonic vibration velocity
distribution.

Let us assume that a flat source is located at the baffle surface, i.e. for z = 0. Then,
in the case of the two-wall corner regionΩ1 we use Eq. (10) to formulate the acoustic
pressure amplitude as

p1(r) =
ω̺0

π2

+∞∫

ξ=−∞

+∞∫

η=0

exp(iξx) cos ηy exp(iγz) M1(ξ, η)
dξdη

γ
, (22)

whereM1(ξ, η) =
∫
S0

vn(r0) exp(−iξx0) cos ηy0 dS0. In the case of the three-wall

corner regionΩ2 we use Eq. (18) and formulate the acoustic pressure amplitude in the
form of

p2(r) =
4ω̺0

π2

+∞∫

ξ=0

+∞∫

η=0

cos ξx cos ηy exp(iγz) M2(ξ, η)
dξdη

γ
, (23)

whereM2(ξ, η) =
∫
S0

vn(r0) cos ξx0 cos ηy0 dS0. The acoustic pressure amplitudes

p1, p2 ∈ C radiated by the source located on the planez = 0 are valid for any point of
the regionsΩ1 andΩ2, respectively.

4. Concluding remarks

The construction of the Green function for the two-wall corner as well asfor the
three-wall corner have been proposed and presented in their Fourierrepresentations.
These formulas have not been presented earlier for the Neumann boundary value prob-
lems as described herein. They are useful for some further computations of the acoustic
pressure radiated by flat sound sources with continuous normal vibration velocity dis-
tributions.
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Appendix A. Fourier transforms

The Fourier transform from Eq. (3) has been formulated using the Fourier transform
pairFx,F−1

ξ for the variablesx, ξ within their infinite limits(−∞,+∞)

G(r | r0) = F−1
ξ g(ξ, y, z | r0) =

1√
2π

+∞∫

−∞

g(ξ, y, z | r0) exp(iξx) dξ,

(A1)

g(ξ, y, z | r0) = Fx G(x, y, z | r0) =
1√
2π

+∞∫

−∞

G(r | r0) exp(−iξx) dx,

and the Fourier transform pairCy, C−1
η for the variablesy, η within their semi-infinite

limits [0,+∞)

G(r | r0) = C−1
η g(x, η, z | r0) =

√
2

π

+∞∫

0

g(x, η, z | r0) cos ηy dη,

(A2)

g(x, η, z | r0) = Cy G(r | r0) =

√
2

π

+∞∫

0

G(r | r0) cos ηy dy.

Equations (3) have been obtained by composing the following transforms

G(r | r0) = F−1
ξ C−1

η g(ξ, η, z | r0),
(A3)

g(ξ, η, z | r0) = FxCy G(r | r0).

In the case of the three-wall corner, the pair of Fourier transforms (15) has been obtained
by composing the following transforms (A2)

G(r | r0) = C−1
ξ C−1

η g(ξ, η, z | r0),
(A4)

g(ξ, η, z | r0) = CxCy G(r | r0).

The Dirac delta function integral properties (4) and (16) have been obtained using the
formulasf(ξ, η) ≡ FxCy F−1

ξ C−1
η f(ξ, η) andf(ξ, η) ≡ CxCy C−1

ξ C−1
η f(ξ, η), respec-

tively.
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