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In the areas of acoustic research or applications that deal with not-precisely-known or variable condi-
tions, a method of adaptation to the uncertainness or changes is usually necessary. When searching for an
adaptation algorithm, it is hard to overlook the least mean squares (LMS) algorithm. Its simplicity, speed
of computation, and robustness has won it a wide area of applications: from telecommunication, through
acoustics and vibration, to seismology. The algorithm, however, still lacks a full theoretical analysis. This
is probabely the cause of its main drawback: the need of a careful choice of the step size – which is the
reason why so many variable step size flavors of the LMS algorithm has been developed.
This paper contributes to both the above mentioned characteristics of the LMS algorithm. First, it

shows a derivation of a new necessary condition for the LMS algorithm convergence. The condition,
although weak, proved useful in developing a new variable step size LMS algorithm which appeared to
be quite different from the algorithms known from the literature. Moreover, the algorithm proved to be
effective in both simulations and laboratory experiments, covering two possible applications: adaptive
line enhancement and active noise control.

Keywords: signal processing, adaptive algorithms, least mean squares, active noise control, system
identification.

1. Introduction

Is is a long time since adaptive techniques and al-
gorithms were a domain of control science researchers
only. In acoustics, for example, application of adaptive
techniques includes (but is not limited to) adaptive
beamforming, adaptive channel equalization, acoustic
feedback reduction in digital hearing aids, many fla-
vors of acoustic signal processing including underwa-
ter acoustics and active noise control, speech process-
ing, and acoustic echo cancellation. The last example
is very common nowadays, as adaptive echo cancelers
are used in mobile phones. All these applications re-
quire a method of adaptation. The most popular adap-
tation algorithms are Recursive Least Squares (RLS)
and Least Mean Squares (LMS). The former, although
more complicated, is better known from a theoretical
point of view. Nevertheless, due to its qualities, it is the
latter that is a common choice for many applications.
LMS algorithm has been used for many years. Its

features include simplicity, speed of computation, and
robustness (proved by Hassibi et al., 1993; 1996).
Therefore, the LMS algorithm covers a wide area

of use, including telecommunication, acoustics, vibra-
tion, automatic control, and even seismology (Haykin,
2002). The main drawback of the LMS algorithm is
that it requires a careful choice of the only parame-
ter used for adjusting its behavior, called step size (see
Eq. (7)). A too large step size gives a fast response to
plant changes but results in a large excess mean square
error (MSE), and may even cause loss of convergence.
A too small step size degrades tracking capabilities of
the algorithm.
An optimal step size, giving a trade-off between

the speed of convergence and residual error, depends
on the power of the input data. Therefore, the main,
commonly used modification of the LMS algorithm is
a normalization of the step size. This leads to the nor-
malized LMS (NLMS) algorithm, in which the step size
is scaled (divided) by an estimated power of the in-
put data. However, even the NLMS algorithm requires
a “base” step size choice.
The problem of an automatic step size adjustment

has been addressed in the literature for many years.
The earliest work reported is probably the paper by
Harris et al., dated by 1986 (Harris et al., 1986).
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The topic was popular in the 90-ies (see Kwong,
Johnston, 1992; Evans et al., 1993;Mathews, Xie,
1993; Aboulnasr, Mayyas, 1997), and returned in
the recent years (see (Hwang, Li, 2009), but also con-
ference papers (Bismor, 2008; 2009; Liu et al., 2009;
Sun et al., 2009; Zou, Zhao, 2009;Wang et al., 2009;
Bi et al., 2010)). The problem has not been solved,
which probably can be explained by an inherent com-
plexity of the LMS algorithm. In fact, in the well-
known adaptive filtering textbook (Haykin, 2002), we
read: “(. . . ) although the LMS filter is very simple in
physical terms, its mathematical analysis is profoundly
complicated because of its highly nonlinear nature. In-
deed, despite the extensive effort that has been expended
in the literature to analyze the LMS filter, we still do
not have a direct mathematical analysis of its stability
and steady-state performance, and quite probably we
never will.”
The algorithm proposed by Harris et al. in

(Harris et al., 1986) uses a diagonal matrix instead
of a single step size. Each element of the diagonal is al-
lowed to vary between chosen minimum and maximum
values. The step sizes are decreased if the value of the
gradient of the mean square error alternates in sign,
and increased if the sign is constant over some number
of successive samples. However, the idea to use indi-
vidual step sizes for each filter tap did not have many
followers – see (Ang, Farhang–Boroujeny, 2001).
Another large group of variable step size algorithms

is based on the idea of one but changable step size
for all filter taps. The origin of the idea is connected
with the observation that the step size should be small
when the adaptive filter is near its optimum value and
large otherwise. However, simple algorithms selecting
the step size based on the magnitude of the estimation
error did not prove to be effective (Mathews, Xie,
1993). Therefore, the main effort was directed towards
the selection of the criterion of when to increase and
when to decrease the step size.
A few variable step size algorithms known from the

literature update the step size based on the gradient
of the squared error with respect to the step size itself
(Mathews, Xie, 1993;Ang, Farhang–Boroujeny,
2001). An update of the step size in a step manner,
where the step size is a multiple of the squared er-
ror (Kwong, Johnston, 1992), seems to be a sim-
plification of this technique. Numerous algorithms use
a function of the squared error as a basis to the step
size adjustment (Liu et al., 2009; Sun et al., 2009).
There are also algorithms that use a correlation

between two consecutive error samples (or a func-
tion of this correlation) as a main factor for the step
size update (Aboulnasr, Mayyas, 1997; Zou, Zhao,
2009). A relatively new conference paper presents an
approach where the step size is not updated in a step
fashion but is rather computed in each iteration “from
anew” (Wang et al., 2009). Finally, there are more

sophisticated algorithms combining a couple of ap-
proaches like (Hwang, Li, 2009) which uses the step
size controlled by the squared norm of the weighted-
averaged gradient vector.
The common denominator of the algorithms dis-

cussed above is that they update the step size based
on a function of the error. In this paper, the author
presents an approach where the step size is updated
based solely on the input data. The algorithm was de-
veloped after discovering a new, weak condition for the
LMS filter convergence. The algorithm proved to be ef-
fective in simulations, as well as in practice of active
noise control, providing fast convergence and a small
excess mean square error.
The rest of the paper is organized as follows. The

LMS algorithm together with the convergence criteri-
ons known from the literature is summarized in Sec. 2.
The new convergence condition for the LMS adaptive
filter is derived in Sec. 3. The algorithm for the step size
adjustment is described in Subsec. 3.2. Simulation ex-
periments for an adaptive line enhancer are described
in Sec. 4. Finally, results of active noise control (ANC)
experiments with the new algorithm are described in
Sec. 5. The paper is concluded in Sec. 6.

2. The LMS algorithm

2.1. Statistical filtering

Consider the statistical filtering problem presented
in Fig. 1 (Haykin, 2002). The input signal u(n) is com-
posed of discrete values. This signal is filtered with the
filterW (z−1) which is a linear, discrete time, transver-
sal filter. The result of this filtration, the filter output
y(n), is compared with the desired signal values d(n) to
produce the error e(n). The statistical filtering prob-
lem is about how to choose the filter coefficients to
minimize – in some sense – the error.

Fig. 1. Statistical filtering problem.

Without a loss of generality we will assume that
u(n) and y(n) are discrete time random variables with
a zero mean value, and are jointly stationary in a wide
sense. Furthermore, we will assume thatW (z−1) is a fi-
nite impulse response (FIR) filter. Therefore, the out-
put value at a discrete time n can be expressed as:

y(n) =

N−1∑

i=0

w∗
i u(n− i), (1)
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where wi is the i-th element of the filter impulse re-
sponse (called also filter coefficient or filter tap), N is
the filter length and ∗ denotes a complex conjugate.
After defining:

w = [w0, w1, . . . wN−1]
T
, (2)

u(n) = [u(n), u(n− 1), . . . u(n−N)]
T
, (3)

Eq. (1) can be expressed as:

y(n) = wHu(n) = uH(n)w, (4)

where superscript H denotes Hermitian transposition.
The error can, therefore, be expressed as:

e(n) = d(n)− y(n) = d(n)−wHu(n). (5)

If the minimization criterion for the error signal
is the most commonly used mean square value of the
error e(n) (MSE), the well-known solution of the opti-
mization is the Wiener-Hopf equation (Haykin, 2002):

wo = R−1p, (6)

where R = E(u(n)uT(n)) is the autocorrelation ma-
trix of the input signal, p = E(u(n)d(n)) is the cross-
correlation vector between the input and the desired
signal, and E denotes an expectation operator.
As the Wiener-Hopf equation (6) involves inversion

of a possibly large autocorrelation matrix, the equa-
tion is rarely used in practical applications. Instead,
many applications use the idea of a local iterative de-
scent resulting in a recursive algorithm, updating filter
coefficients in a step-by-step manner (Haykin, 2002).
The following three recursive algorithms are the most
prominent: the method of steepest descent, the least
mean squares (LMS) algorithm, and the recursive least
squares (RLS) algorithm.
The method of steepest descent requires an exact

knowledge of statistical properties of the input and the
desired signal in the form of an autocorrelation matrix
R and cross-correlation vector p. The RLS algorithm,
on the other hand, is much more computationally ex-
pensive. Therefore, it is the LMS algorithm that gained
the biggest attention and the highest number of prac-
tical implementations.

2.2. Convergence of the LMS algorithm

The LMS algorithm updates filter coefficients ac-
cording to the following formula:

ŵ(n+ 1) = ŵ(n) + µu(n)e∗(n), (7)

where ŵ(n) is the vector of estimated filter coefficients
in step n, µ is the step size and e∗(n) is the com-
plex conjugate of the estimation error, which is now
expressed by:

e(n) = d(n)− ŵH(n)u(n). (8)

Assuming ŵ(0) = 0, the filter coefficients in the
n-th step can be expressed as:

ŵ(n) = µ

n−1∑

i=0

u(i)e∗(i). (9)

Substituting Eq. (8) into the above equation gives:

ŵ(n) = µ

n−1∑

i=0

u(i)
(
d∗(i)− ŵH(i)u∗(i)

)
(10)

and reveals the previously mentioned highly nonlinear
nature of the LMS algorithm (Haykin, 2002). Thus,
a detailed mathematical analysis of the LMS algo-
rithm is not currently known. However, it is apparent
from the above equation, and is even more clear from
Eq. (7), that in convergence of the LMS algorithm the
step size µ plays the main role.
There are two main results concerning conditions

of convergence of the LMS algorithm. Both of them
require stronger assumptions than those described at
the beginning of Subsec. 2.1. In practice, both sets of
assumptions contain, among others, the small step size
assumption, which means that the step size should tend
to zero as the discrete time increases: µ n→∞

−−−−→ 0. The
first condition, attributed to Butterweck (1995),
states that the convergence necessary condition can be
expressed as:

0 < µ <
2

λmax
, (11)

where λmax is the largest eigenvalue of the autocor-
relation matrix R (for a detailed derivation see, e.g.
(Haykin, 2002)). The second main result, presented
by Sayed (2003), states that the LMS algorithm is
convergent in the mean square provided that:

N∑

i=1

µλi

1− µλi
< 2, (12)

where λi are the eigenvalues of the autocorrelation ma-
trix R.
The small step size assumption describes very well

the situation where the adaptive filter is near its op-
timal value. Particularly in the case of variable step
size modifications of the LMS algorithm, the step size
is required to be small near the end of convergence
to minimize the excess mean square error. However,
during the beginning of adaptation it is desired to
keep the step size large to allow for a fast adapta-
tion. This is also the case of many practical applica-
tions when the filter should adapt very fast after rapid
plant changes. As an example, industrial hall, room,
or office ANC application can be considered, when the
ANC filter should adapt very fast after changes in the
environment caused by persons walking in the room.
Also, speech enhancement in a noisy environment is
an application that requires a fast adaptation – see
e.g. (Latos, Pawelczyk, 2010).
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3. New convergence condition and variable step

size algorithm

3.1. Convergence condition

Let us assume now the input and desired signals
u(n) and d(n) are discrete and finite valued. For the
simplicity and without a loss of generalization, let us
assume that their values are real. Substituting Eq. (8)
into Eq. (7) yields:

ŵ(n+1) = ŵ(n) + µu(n)
[
d(n)− ŵT(n)u(n)

]
. (13)

After regrouping, the above equation becomes:

ŵ(n+1) =
[
1− µu(n)uT(n)

]
ŵ(n)+µu(n)d(n). (14)

Notice that Eq. (14) can be viewed as a discrete, non-
stationary system state equation:

x(n+ 1) = A(n)x(n) +B(n)d(n), (15)

with the state matrix:

A(n) = 1− µu(n)uT(n). (16)

From the control theory (Kaczorek, 1993) it fol-
lows that for a discrete, stationary system instability
it suffices that:

tr(|A|) =
N∑

i=1

|aii| > N, (17)

where aii is the i-th element on the diagonal of the
state matrix A, and N is the number of states (or the
size of matrix A). The reason is that for the stability
of a discrete system it is necessary that all the eigen-
values of the system state matrixA are within the unit
disk. On the other hand, from the linear algebra it fol-
lows that the trace of a matrix is equal to the sum of
its eigenvalues. Thus, a trace greater than the size of
a matrix means that at least one eigenvalue of a matrix
is greater than one.
Combining Eqs. (16) and (17), the divergence suf-

ficient condition for the adaptive LMS filter can be
formulated as:

tr
(
|1− µu(n)uT(n)|

)

=

N−1∑

i=0

|1− µu2(n− i)| > N sufficiently long. (18)

The term “sufficiently long” has been added because of
the nonstationarity of the system under consideration.
In such a system, if the condition in Eq. (18) is true for
a limited number of samples but turns false afterwards,
the filter may still remain convergent. Therefore, the
convergence necessary condition can be expressed as:

N−1∑

i=0

|1− µu2(n− i)| ≤ N almost always. (19)

It must be emphasized that the above condition has
been obtained without any meaningful assumptions,
especially without the small step assumption. In fact,
it was not even assumed that the signals are random or
stationary. Note also that the condition regards only
the filter input u(n); the error values are not consid-
ered. However, this condition defines the largest step
size – the step size which may be used for a fast adapta-
tion at the beginning of (a phase of) a convergence. In
practical implementations, to obtain acceptable excess
mean square error the step size must be even smaller.
Intuitively, this means that the condition in Eq. (19)
must always be true.

3.2. Variable step size algorithm

Performed simulations revealed that the step sizes
chosen close to a violation of the condition from
Eq. (19) result in large excess mean square errors and
even in a sudden filter coefficients growth, similar to
parameter explosion in the RLS algorithm. Therefore,
it may be reasonable to strengthen this condition in
the following way:

AA��
0≤i≤N−1

|1− µu2(n− i)| ≤ 1

⇒

N−1∑

i=0

|1− µu2(n− i)| ≤ N. (20)

Please note that when the left hand side inequality is
fulfilled, the right hand side inequality holds, but the
opposite relation is not necessarily true.
The left hand side of Eq. (20) can be expressed as:

AA��
0≤i≤N−1

−1 ≤ 1− µu2(n− i) ≤ 1. (21)

Thus, for real input data, considering that the above
inequality should hold throughout the whole adapta-
tion, the final condition is:

AA��
n

0 ≤ µ ≤
2

u2(n)
. (22)

The above condition specifies the upper limit on the
step size when a fast adaptation is needed. The condi-
tion is very easy to check in practical implementations.
Particularly, when the data comes from A/D convert-
ers, the condition can be hard-coded and does not even
have to be checked against in each adaptation step. It
may also serve as a basis for a preliminary choice of the
step size. Unfortunately, it proved to be only a very
weak condition.

3.3. Further refinements

The derivation of the new LMS convergence condi-
tion directed the attention towards Eq. (19). For fur-
ther development, the convergence function has been
defined as:
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J(n) =
1

N

N−1∑

i=0

|1− µ(n)u2(n− i)|. (23)

Based on this function and condition in Eq. (19) a
simple algorithm has been constructed:

if J(n) ≥ ǫ then µ(n+ 1) = 0.99µ(n). (24)

The above algorithmwas used, with ǫ = 0.99, for a sim-
ulation of estimation of the parameter of the autore-
gressive process given by Haykin (2002):

u(n) = −au(n− 1) + v(n). (25)

The algorithm performed better than LMS and NLMS
algorithms, giving a fast adaptation and small excess
MSE.
Next, the same algorithm has been applied to sim-

ulations of adaptive line enhancer (ALE) in Fig. 2.
The input for the ALE was a recorded speech signal
contaminated with four sinusoids – see spectrogram in
Fig. 3. The adaptive filter length N and the delay ∆
were both equal to 100. The experiments with differ-
ent constant step sizes revealed a great robustness of
ALE to the step size changes: good results were ob-
tained for 0.0005 ≤ µ ≤ 0.002. However, the algorithm
Eq. (24) failed to produce good results, ending with
µ = 0.0022. Furthermore, changing ǫ to different val-
ues resulted only in a slightly better, but still unsatis-
factory performance.

Fig. 2. Adaptive Line Enhancer.

Fig. 3. Spectrogram of ALE input signal.

The experiments with the ALE drawed the atten-
tion to the fact that it is not the value of the conver-
gence function J(n) in Eq. (23), that is most impor-
tant for the convergence of the algorithm, but rather
the absolute value of 1−J(n). Many experiments with
different filter lengths showed also that the longer the
filter is, the smaller the value of |1− J(n)| should be.
Therefore, the function describing a desired relation-
ship between the filter length and the |1 − J(n)|, for
filter lengths greater than 10, was chosen experimen-
tally as:

f(N) =
1

N
−

10

N2
, (26)

and the algorithm was modified to the following form:

if |1− J(n)| ≥ f(N) then µ(n+1) = 0.99µ(n). (27)

The choice of the function f(N) is not critical: any
monotonously decreasing function with similar values
in the range of interesting filter lengths can be used.
The algorithm in Eq. (27) was performing well in

Matlab/Simulink simulations. However, it appeared to
be too time-consuming for real-time applications. Par-
ticularly, the summation in Eq. (23) was not well-
suited for real-time computations. Therefore, the rect-
angular summation window from i = 0 to N − 1 was
substituted by an exponential window with the expo-
nent factor equal to 0.9:

Je(n) = 0.9Je(n− 1) + 0.1
∣∣1− µ(n)u2(n)

∣∣ . (28)

Moreover, as a decrease in the step size with the mul-
tiplication factor 0.99 (i.e. µ(n + 1) = 0.99µ(n) in
Eq. (27)) sometimes appeared to be too slow to prevent
the filter from going unstable, the vector of multipli-
cation factors was introduced:

mv = [0.99 0.97 0.95 0.93 0.9]
T
. (29)

In the final algorithm, the multiplication factor was
selected to be a next smaller vector element if the con-
dition for changing the step size occurred in a current,
as well as in a previous adaptation step; otherwise the
first element of the vector mv was used.

4. Simulation experiments

To test the performance of the algorithm described
above in active noise control applications the simula-
tion experiments described in this section were per-
formed. First, to simulate the nonstationarity, mod-
els of electro-acoustic paths for different error micro-
phone locations were obtained. The models were in
the form of FIR filters with 300 parameters. Next, the
ANC system model with no acoustic feedback, pre-
sented in Fig. 4, was assumed. A perfect modeling
(Ŝ(z−1) = S(z−1)) of the secondary path was assumed
for these simulations.
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Fig. 4. Block diagram of ANC system used during
the simulations.

Nonstationarity was modeled as a switched system,
with switches among four different models occurring at
regular intervals. The magnitudes of three exemplary
transfer functions of the models of the secondary path
used during the simulation are presented in Fig. 5. The
basic input signal was composed of two sinusoids, at
ω = 0.2π and ω = 0.888π, embedded in white noise
(Bismor, 2009). The levels of sinusoids and of the
noise was altered for different experiments. The length
of the ANC filter was 128.

Fig. 5. Magnitude of the transfer function of the three mod-
els used during the simulation (for clarity, the fourth model

has not been included).

The goal of the simulation experiments was to com-
pare the behavior of the NLMS algorithm with the pro-
posed algorithm. The comparison not only considered
the attained attenuation, but also took into the con-
sideration the variance of the attenuated signal during
the whole experiment. In fact, the latter criterion was
considered superior because the development was con-
centrated on a fast adaptation. Thus, the main crite-
rion calculated for the comparison of both algorithms
was the mean square error (MSE) defined as:

D(n) =

L−1∑

i=0

e2(n− i), (30)

where L is the length of the window used for smooth-
ing.
The proposed variable step size algorithm proved to

be superior to the NLMS algorithm in spite of many
trials to optimally set the NLMS step size. The al-
gorithm responded very fast after each change of the
secondary path transfer function. The attenuation was
always slightly better than in the case of the NLMS.
The example of attenuation for the NLMS and the pro-
posed algorithm is presented in Fig. 6. The values of
the MSE calculated over the whole simulation time for
four different experiments are presented in Table 1.

Fig. 6. Time plot of the error signal with ANC algorithms.

Table 1. The MSE in simulations.

Experiment No. NLMS VS LMS

1 28.6 25.1

2 55.5 48.3

3 28.7 24.9

4 32.9 28.7

5. Laboratory experiments

Good simulation results encouraged an application
of the new algorithm in a real environment. The ap-
plication of ANC in an industrial hall has been chosen
as one with requirements for a fast adaptation. More-
over, as a good model of the secondary path is usu-
ally crucial for a room ANC (Elliott, 2001), online
adaptation of the secondary path, with a random noise
source and additional adaptive filter for improvement
of the convergence rate (Kuo, Morgan, 1996), was
performed.
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Fig. 7. MSE for experiments with 500 Hz tone.

Fig. 8. MSE for experiments with band-limited, 500–600 Hz noise.

The laboratory setup was build around a DSpace
DS1104 board, and contained all the necessary equip-
ment like microphones, preamplifiers, filters, ampli-
fiers, and loudspeakers. The algorithms were imple-
mented in C and downloaded into the board. To con-
trol the system, a C++ application was build using
a DSpace Clib.
Many different noise signals were tested, starting

from single tones, through wide-band signals, ending
with signals recorded from a real, noisy environment.
For each signal, three experiments were performed: two
with the NLMS algorithm with different step sizes, and
one with the proposed algorithm. The step sizes chosen
for the NLMS algorithm were 0.003 and 0.005. For each
experiment maximum attenuation after 25 seconds was
calculated, as well as the MSE (Eq. (30)).
Generally, the results can be categorized into three

groups. The first group contains the signals for which
the proposed algorithm gave better results when com-

pared with the NLMS parametrized with one step size,
while it was inferior to the NLMS parametrized with
the other step size. This group is referred to as “neu-
tral”, although it still proves one advantage of the pro-
posed algorithm: no necessity to choose the step size,
or to change it if the noise changes. The MSE for two
examples of this group are presented in Figs. 7 and 8.
The first one is the attenuation of 500 Hz tone. In this
case, the NLMS algorithm is better for the 0.003 step
size, but worse for the 0.005 one. The differences are
not substantial but noticable. The second is the atten-
uation of white noise limited to 500–600 Hz band. In
this case, the NLMS is better with the 0.005 step size,
but worse with the 0.003 one. There were about 50%
of “neutral” cases during the laboratory tests.
The second group contains those signals for which

the proposed algorithm was superior to the NLMS with
both step sizes. Two examples of this group are pre-
sented in Figs. 9 and 10. The first one is the atten-
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Fig. 9. MSE for experiments with 140 Hz tone.

Fig. 10. MSE for experiments with power generator noise.

Fig. 11. MSE for experiments with band-limited, 200–300 Hz noise, with sine at 250 Hz.
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uation of a 140 Hz tone, the second is the attenua-
tion of noise recorded near a power generator. In those
cases, the proposed algorithm usually provides not only
a faster convergence, but also a higher attenuation.
This group contains about 37% results of attenuation
of single tones and about 43% results of attenuation of
complex signals.
There were also cases where the NLMS algorithm

won. They were more numerous while attenuating sin-
gle tones (about 13%) than while dealing with com-
plex signals (only two cases among 38 tested complex
signals). If they happened, either the attenuation at
the end of the experiment was comparable for both of
the algorithms, or it was a case of a signal difficult to
attenuate. One example of this group is presented in
Fig. 11.

6. Conclusions

The LMS algorithm is nowadays a standard adap-
tation algorithm for many practical applications. Its
drawback is the lack of a complete mathematical anal-
ysis and rules for choosing the step size, particularly,
when a fast adaptation is essential. The paper presents
an innovative analysis of the LMS convergence. Based
on this analysis, a new algorithm for an automatic
step size adjustment has been proposed. The algorithm
proved to be effective both in simulations and in real
experiments of active noise control.
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